«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2025. Vol 53

Evaluation of the Impact of Climatic, Morphometric, and Geophysical Factors on Thunderstorm-Ignited Wildfires in the Altai Republic

Author(s)

M. Yu. Krechetova1, A. V. Karanin1, N. А. Kocheeva1, A. V. Glebova1

1 Gorno-Altaisk State University, Gorno-Altaisk, Russian Federation

Abstract
The results of a study of the contribution of climatic and geophysical conditions of the terrain to thunderstorm fire danger in the Altai Republic are presented. The research utilized information on natural fires recorded in the Altai Republic from 2016 to 2020. Climatic and geophysical characteristics of fire locations were determined based on SRTMGL3, EIGEN-6C4, EMAG2, WorldClim 2.1 data. Information on lightning discharges was provided by the WWLLN network. Data processing was conducted using factor analysis based on the principal component method. The study revealed that the largest variance (46 %) in the considered data was attributed to differences in climatic characteristics (annual mean temperature, precipitation, and lightning density), which were in turn influenced by changes in elevation above sea level. The first principal component, combining these characteristics, can be used as a comprehensive indicator to classify fires with similar climatic parameters and landscapes. The second largest variance (14.8 %) was determined by annual average lightning density and values of magnetic and gravitational anomalies at fire locations. It was demonstrated that the values of the second principal component reflect an increasing trend in lightning density with higher values of magnetic and gravitational anomalies in the studied area. The application of factor analysis based on principal component method allowed for the determination of typical climatic and geophysical conditions contributing to thunderstorm fires in the investigated territory.
About the Authors

Krechetova Marina Yur'evna, Senior Lecturer, Department of Mathematics, Physics and Informatics. Gorno-Altaisk State University 1, Lenkin st., Gorno-Altaisk, 649000, Russian Federation e-mail: belikovamy@yandex.ru 

Karanin Andrey Vladimirovich, Candidate of Sciences (Geography), Associate Professor of the Department of Geography and Environmental Management. Gorno-Altaisk State University 1, Lenkin st., Gorno-Altaisk, 649000, Russian Federation e-mail: vedmedk@bk.ru 

Kocheeva Nina Alekseevna, Candidate of Sciences (Geology and Mineralogy), Associate Professoк of the Department of Geography and Environmental Management. Gorno-Altaisk State University 1, Lenkin st., Gorno-Altaisk, 649000, Russian Federation e-mail: nina_kocheewa@mail.ru 

Glebova Alyona Viktorovna, Senior Lecturer, Department of Mathematics, Physics and Informatics. Gorno-Altaisk State University 1, Lenkin st., Gorno-Altaisk, 649000, Russian Federation e-mail: alyna.glebova@gmail.com

For citation
Krechetova M.Yu., Karanin A.V., Kocheeva N.А., Glebova A.V. Evaluation of the Impact of Climatic, Morphometric, and Geophysical Factors on Thunderstorm-Ignited Wildfires in the Altai Republic. The Bulletin of Irkutsk State University. Series Earth Sciences, 2025, vol. 53, pp. 55-69. https://doi.org/10.26516/2073-3402.2025.53.55 (in Russian)
Keywords
lightning initiated wildfire, thunderstorm activity, morphometric characteristics, geophysical conditions of the area, climatic indicators, WWLLN, Altai Republic.
UDC
502.58(571.151)
DOI
https://doi.org/10.26516/2073-3402.2025.53.55
References
  1. Adzhiev A.Kh., Adzhieva A.A., Tumgoeva Kh.A. Vliyanie orografii na kharakteristiki grozovoi deyatel'nosti [The influence of orography on thunderstorm activity characteristics], Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Estestvennye nauki [Bulletin of Higher Educational Institutions. North Caucasus Region. Natural Sciences], 2008, 2, pp. 109-112. (in Russian) 
  2. Baranovsky N.V. Prognozirovanie lesnoi pozharnoi opasnosti v usloviyakh antropogennoi nagruzki [Forest Fire Danger Forecasting Under Anthropogenic Pressure]. Novosibirsk, SB RAS Publ., 2021. 302 p. (in Russian) 
  3. Baryshnikova O.N., Krupochkin E.P. Magnitnye anomalii i raznoobrazie geosistem [Magnetic anomalies and geosystem diversity], Izvestiya Altayskogo gosudarstvennogo universiteta [Bulletin of Altai State University], 2011, no. 3-2, pp. 85-87. (in Russian) 
  4. Borisenkov E.P. Rol' anomalii gravitatsionnogo polya Zemli v formirovanii konvektivnykh dvizhenii kak stimulyatora grozovoi aktivnosti [The role of Earth’s gravitational field anomalies in the formation of convective motions as a thunderstorm activity stimulator], Trudy Pyatoi Rossiiskoi konferentsii po atmosfernomu elektrichestvu [Proceedings of the Fifth Russian Conference on Atmospheric Electricity], 2003, 2, pp. 42-44. (in Russian) 
  5. Dmitriev A.N., Krechetova S.Yu., Kocheeva N.A. Grozovye i lesnye pozgary ot groz na territorii Respubliki Altai [Thunderstorms and Forest Fires Caused by Lightning in the Altai Republic]. Gorno-Altaysk, GASU Publ., 2011, 75 p. (in Russian) 
  6. Ershova T.V. Anomalii gravitatsionnogo i magnitnogo polei Zemli i grozovaya aktivnost' [Anomalies of Earth’s gravitational and magnetic fields and thunderstorm activity], Global'naya elektricheskaya tsep [Global Electric Circuit], 2015, pp. 49-50. (in Russian) 
  7. Karanin A.V., Belikova M.Yu. Otsenka vliyaniya magnitnykh i gravitatsionnykh anomalii na formirovanie grozovykh pozharov na territorii Respubliki Altai [Assessment of the influence of magnetic and gravitational anomalies on thunderstorm fire formation in the Altai Republic], Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Estestvennye nauki [Bulletin of Higher Educational Institutions. North Caucasus Region. Natural Sciences], 2023, no. 1 (217), pp. 87-100. https://doi.org/10.18522/1026-2237-2023-1-87-100 (in Russian) 
  8. Lyushvin P.V. Geofizicheskie i bio yavleniya v radiatsionnykh i magnitnykh anomaliyakh [Geophysical and bio phenomena in radiation and magnetic anomalies]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Modern Problems of Remote Sensing of the Earth from Space]. Proceedings of the 17th All-Russian Conference 2019, pp. 389-390. (in Russian) 
  9. Nesterov V.G. Gorimost lesa i metody ee opredeleniya [Forest Flammability and Methods of Its Determination]. Moscow, Goslesbumaga Publ., 1949, 76 p. (in Russian) 
  10. Novgorodov V.D., Smolnikova L.G., Zakharov A.I. Sposob vyyavleniya pozharoopasnykh oblastei na mestnosti [Method for identifying fire-hazardous areas]. Avt. sv. [Certificate of Authorship] N 902763, 1982, no. 5, pp. 15-17. (in Russian) 
  11. Aivazyan S.A., Bukhshtaber V.M., Enyukov I.S., Meshalkin L.D. Prikladnaya statistika: Klassifikatsiya i snizhenie razmernosti [Applied Statistics: Classification and Dimensionality Reduction]. Moscow, Finansy i statistika Publ., 1989. 198 p. (in Russian) 
  12. Sannikov S.N., Zakharov A.I., Smolnikova L.G., Sannikova N.S. Lesnye grozovye pozgary kak indikator svyazei mezhdu atmosferoi, litosferoi i biosferoi [Forest lightning fires as an indicator of atmosphere-lithosphere-biosphere connections]. Ekologiya [Ecology], 2010, 1, pp. 3-8. (in Russian)
  13. Karanin A.V., Belikova M.Yu., Kocheeva N.A., Kakorin V.A. Sklonovaya i vysotnaya priurochennost' molnievykh razryadov i pozharov ot groz v gornoi mestnosti [Slope and altitude distribution of lightning discharges and thunderstorm fires in mountainous areas], Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Estestvennye nauki [Bulletin of Higher Educational Institutions. North Caucasus Region. Natural Sciences], 2024, no. 3 (223), pp. 71-80. https://doi.org/10.18522/1026-2237-2024-3-71-80. (in Russian) 
  14. Khairullin K.Sh., Yakovlev B.A. Antropogennye i mezoklimaticheskie vliyaniya na grozy i grad [Anthropogenic and mesoclimatic influences on thunderstorms and hail], Tezisy dokladov IV Vsesoyuznogo simpoziuma po atmosfernomu elektrichestvu [Abstracts of the IV All-Union Symposium on Atmospheric Electricity], 1990, pp. 102-103. (in Russian) 
  15. Galanaki E., Kotroni V., Lagouvardos K., Argiriou A. A ten-year analysis of cloud-to-ground lightning activity over the Eastern Mediterranean region. Atmospheric Research, 2015, 166, pp. 213– 222. https://doi.org/10.1016/j.atmosres.2015.07.008 
  16. Adab H., Kanniah K.D., Solaimani K. Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Natural Hazards, 2013, 65, pp. 1723-1743. https://doi.org/10.1007/s11069-012-0450-8
  17. Baltaci U., Yildirim F. Effect of Slope on the Analysis of Forest Fire Risk. Hacettepe Journal of Biology and Chemistry, 2020, 48(4), pp. 373–379. 
  18. Cureton E.E., D'Agostino R.B. Factor Analysis: An Applied Approach. 1st ed. New York, Psychology Press Publ., 1993, 480 p. https://doi.org/10.4324/9781315799476 
  19. Forste C., Bruinsma S.L., Abrikosov O. [et al.] EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services, 2014. http://doi.org/10.5880/icgem.2015.1 
  20. Fick S.E., Hijmans R.J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 2017, vol. 37, no. 12, pp. 4302-4315. https://doi.org/10.1002/joc.5086
  21. Jaiswal R.K., Mukherjee S., Raju D.K., Saxena R. Forest fire risk zone mapping from satellite imagery and GIS, International Journal of Applied Earth Observation and Geoinformation, 2002, vol. 4, no. 1, pp. 1-10. https://doi.org/10.1016/S0303-2434(02)00006-5 
  22. Jolliffe I.T. Principal Component Analysis. New York, Springer-Verlag Publ., 2002. 
  23. Conedera M., Cesti G., Pezzatti G.B., Zumbrunnen T., Spinedi F. Lightning-induced fires in the Alpine region: An increasing problem. Forest Ecology and Management, 2006, 234(1), pp. S68. https://doi.org/10.1016/j.foreco.2006.08.096 
  24. Meyer B., Saltus R., Chulliat A. EMAG2v3: Earth Magnetic Anomaly Grid (2-arc-minute resolution). Version 3. NOAA National Centers for Environmental Information, 2017. https://doi.org/10.7289/V5H70CVX 
  25. Rorig M.L., Ferguson S.A., McKay S.J., Anderson G., Clark T. Model-generated predictions of dry thunderstorm potential. Journal of Applied Meteorology and Climatology, 2007, vol. 46, no. 5, pp. 605-614. https://doi.org/10.1175/JAM2482.1 
  26. NASA JPL. NASA Shuttle Radar Topography Mission Global 3 arc second [Data set]. NASA EOSDIS Land Processes DAAC, 2013. https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL3.003 
  27. Pandey K., Ghosh S.K. Modelling of Parameters for Forest Fire Risk Zone Mapping. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, XLII(5), pp. 299–304. https://doi.org/10.5194/isprs-archives-XLII-5-299-2018
  28. Hutchins M.L., Holzworth R.H., Virts K.S., Wallace J.M., Heckman S. Radiated VLF energy differences of land and oceanic lightning. Geophysical Research Letters, 2013, vol. 40, no. 10, pp. 2390-2394. https://doi.org/10.1002/grl.50406
  29. Chen Y., Velicogna I., Famiglietti J.S., Randerson J.T. Satellite observations of terrestrial water storage provide early warning information about drought and fire season severity in the Amazon, Journal of Geophysical Research: Biogeosciences, 2013, vol. 118, no. 2, pp. 495-504. https://doi.org/10.1002/jgrg.20046 
  30. Snedecor G.W., Cochran W.G. Statistical Methods. 8th ed. Ames: Iowa State University Press Publ., 1989, 503 p. 
  31. Leybourne B., Smoot C., Gregori G.P., Paparo G., Bhat I. Tectonic Spiral Structures of the Tethyan Vortex Street: GRACE Geoid Interpretations and African Lightning Teleconnections. 33rd IGC, Oslo NCGT Symposium. Oslo, Norway, 2008.
  32. Bourscheidt V., Junior O.P., Naccarato K.P., Pinto I.R.C.A. The influence of topography on the cloud-to-ground lightning density in South Brazil, Atmospheric Research, 2009, vol. 91, no. 2-4, pp. 508-513. https://doi.org/10.1016/j.atmosres.2008.06.010
  33. Gloor E., Wilson C., Chipperfield M.P. et al. Tropical land carbon cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse gas and remote sensing data, Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, no. 373 (1760), pp. 20170302. https://doi.org/10.1098/rstb.2017.0302
  34. Matin Mir A., Chitale Vishwas Sudhir, Murthy Manchiraju S.R., Uddin Kabir [et al.]. Understanding forest fire patterns and risk in Nepal using remote sensing, geographic information system and historical fire data. International Journal of Wildland Fire, 2017, vol. 26, no. 4, pp. 276-286. https://doi.org/10.1071/WF16056

Full text (russian)