«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2021. Vol. 35

Signatures of Creep in the Zunduk Fault Damage Zone on the Northwestern Coast of Lake Baikal

Author(s)
O. V. Lunina, A. A. Gladkov, I. A. Denisenko
Abstract

The results of a high-resolution aerial survey at selected areas in the Zunduk fault damage zone trending northeast along the coastline of the Maloe sea of Lake Baikal from Cape Yadyrtuj are presented. The research was carried out within the framework of the problem of studying the seismotectonics of the shores of Lake Baikal to map the youngest surface ruptures. Based on the images obtained using DJI «Phantom 4 Pro V 2.0» unmanned aerial systems (UAS), we generated orthomosaics and digital terrain models, interpretation of which allowed us to reveal recent ruptures in alluvial fans. The largest number of them is concentrated on the Oto-Khushun Cape, where the development of disturbances as feathering structures occurs at the intersection of the Zunduk fault trending NE–SW and a proposed fault trending NNW–SSE in the water area of Lake Baikal. It explains the block structure of the rupture network in the southwestern part of the cape. Ground penetrating radar profiling showed that the surface ruptures penetrate to a depth of at least several meters. Since the last rupturing earthquake in the Zunduk fault zone is supposed to have occurred 12000–14000 years ago, the ruptures mapped in recent sediments are the result of creep events. The mechanism of their formation is associated with the periodic effect of weak seismic loads on the granular medium, as a result of which micro-slip and subsequent growth of ruptures occur. Taking into account the high rates of erosion and sedimentation within the mountain alluvial fan, as well as the persistence of disturbances in recent sediments, it can be assumed that this process is relatively constant. Identification of such brittle deformations and monitoring of their development in river deltas and outflow cones of watercourses will make it possible to predict possible places of the collapse of the coastal areas of Lake Baikal during moderate and strong earthquakes, as well as to study the dynamics of coastal development – an important component of the abiotic part of the lake ecosystem

About the Authors

Lunina Oksana Viktorovna, Doctor of Sciences (Geology and Mineralogy), Leader Researcher, Institute of the Earth’s Crust SB RAS, 128, Lermontov st., Irkutsk, 664033, Russian Federation, e-mail: lounina@crust.irk.ru

Gladkov Anton Andreeviсh, Candidate of Sciences (Geology and Mineralogy), Researcher, Institute of the Earth’s Crust SB RAS, 128, Lermontov st., Irkutsk, 664033, Russian Federation, e-mail: anton90ne@rambler.ru

Denisenko Ivan Alexandrovich, Junior Researcher, Institute of the Earth’s Crust SB RAS, 128, Lermontov st., Irkutsk, 664033, Russian Federation, e-mail: denisenkoivan.1994@mail.ru

For citation

Lunina O.V., Gladkov A.A., Denisenko I.A. Signatures of Creep in the Zunduk Fault Damage Zone on the Northwestern Coast of Lake Baikal. The Bulletin of Irkutsk State University. Series Earth Sciences, 2021, vol. 35, pp. 57-70. https://doi.org/10.26516/2073-3402.2021.35.57 (in Russian)

Keywords
aerial survey, Zunduk fault, recent ruptures, displacement, alluvial fan
UDC
551.243+528.7(571.53)
DOI
https://doi.org/10.26516/2073-3402.2021.35.57
References
  1. Baikalskii filial geofizicheskoi sluzhby [Baikal branch of geophysical service]. Available at: http://seis-bykl.ru/Main event directory (date of access: 09.11.2020) (in Russian)
  2. Bornyakov S.A., Miroshnuchenko A.I., Salko D.V., Shagun A.N., Dobrynina A.A., Usynin L. A. Vliyanie zemletryasenii na aktivizatsiyu razloma i ego dempfiruyushchii effekt dlya deformatsionnykh i seismicheskikh voln [The Effect of Earthquakes on the Activation of the Fault and Its Damping Effect for Deformation and Seismic Waves]. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Nauki o Zemle [The Bulletin of Irkutsk State University. Series Earth Sciences], 2019, vol. 30, pp. 3-12. https://doi.org/10.26516/2073-3402.2019.30.3 (in Russian)
  3. Denisenko I.A., Lunina O.V. Seismogennye smeshcheniya v zone Zundukskogo razloma po dannym georadiolokatsii (Baikalskii region) [Seismogenic displacements in the Zunduk fault zone from ground penetrating radar (Baikal region)]. Struktura, veshchestvennyi sostav, svoistva, sovremennaya geodinamika i seismichnost platformennykh territorii i sopredelnykh regionov [Structure, material composition, properties, recent geodynamics and seismicity of platform territories and adjacent regions: Proceedings of the XXII All-Russian Scientific and Practical Shchukin Conference with international participation]. Eds. L.I. Nadezhka, T.B. Silkina. Voronezh, Voronezh State University Publishing House, 2020, pp. 120-123. (in Russian)
  4. Ruzhich V.V., Vahromeev A.G., Levina E.A., Sverkunov S.A., Shilko E.V. Ob upravlenii rezhimami seismicheskoi aktivnosti v segmentakh tektonicheskikh razlomov s primeneniem vibratsionnykh vozdeistvii i zakachki rastvorov cherez skvazhiny [Seismic activity control in tectonic fault zones using vibrations and deep well fluid injection]. Fizicheskaya mezomekhanika [Physical Mesomechanics], 2020, vol. 23, no. 3, pp. 54-59. (in Russian)
  5. Sadovsky M.A. O znachenii i smysle diskretnosti v geofizike [On the Meaning and Sense of Discreteness in Geophysics]. Diskretnye svoistva geofizicheskoi sredy [Discrete Properties of Geophysical Environment]. Moscow, Nauka Publ., 1989, pp. 5-14. (in Russian)
  6. Leonov M.G., Kocharyan G.G., Revuzhenko A.F., Lavrikov S.V. Tektonika razrykhleniya: geologicheskie dannye i fizika protsessa [Tectonics of rock loosening: geological data and physics of the process]. Geodinamika i tektonofizika [Geodynamics and tectonophysics], 2020, vol. 11, no. 3, pp. 492-521. https://doi.org/10.5800/GT-2020-11-3-0488 (in Russian)
  7. Chipizubov A.V., Smekalin O.P., Imaev V.S. Paleoseismodislokatsii i paleozemletryaseniya zony Primorskogo razloma (oz. Baikal) [Paleoseismological dislocations and paleoearthquakes in the area of Primorsky Fault (Baikal Lake)]. Voprosy inzhenernoi seismologii [Problems of Engineering Seismology], 2015, vol. 42, no. 2, pp. 63-77. (in Russian)
  8. Agisoft Metashape User Manual: Professional Edition, Version 1.6. Available at: https://www.agisoft.com/pdf/metashape-pro_1_6_en.pdf/ (data of access: 07.11.2020)
  9. Arzhannikova А., Arzhannikov S. Morphotectonic and paleoseismological studies of Late Holocene deformation along the Primorsky Fault, Baikal Rift. Geomorphology, 2019, vol. 342, pp. 140-149. https://doi.org/10.1016/j.geomorph.2019.06.016
  10. Avouac J.P. From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Annu. Rev. Earth Planet. Sci., 2015, vol. 43, pp. 233-271. https://doi.org/10.1146/annurev-earth-060614-105302
  11. Cambell C.S. Rapid Granular Flows. Annual Review of Fluid Mechanics, 1990, vol. 22, pp. 57–92. https://doi.org/10.1146/annurev.fl.22.010190.000421
  12. Daniels D.J. Surface-Penetrating Radar. London, UK: The Institution of Electrical Engineers, 1996, 734 p.
  13. Database of Pliocene-Quaternary Faults in the Southern East Siberia. Available at: http://activetectonics.ru/indexeng.html (date of access: 16.11.2020).
  14. Beauprêtre S., Garambois S., Manighetti I., Malavieille J., Senechal G., Chatton M., Davies T., Larroque C., Rousset D., Cotte N., Romano C. Finding the buried record of past earthquakes with GPR – based palaeoseismology: a case study on the Hope fault, New Zealand. Geophys. J. Int., 2012, vol. 189, pp. 73-100. https://doi.org/10.1111/j.1365-246X.2012.05366.x
  15. Harris R.A. Large earthquakes and creeping faults. Rev. Geophys., 2017, vol. 55, pp. 169-198. https://doi.org/10.1002/2016RG000539
  16. Logatchev N.A. History and geodynamics of the Lake Baikal Rift in the context of the Eastern Siberia rift system: a review. Bull. Centres Rech. Explor.-Prod. Elf Aquitaine, 1993, vol. 17, no. 2, pp. 353-370
  17. Lunina O.V., Denisenko I.A. Single-event throws along the Delta Fault (Baikal rift) reconstructed from ground penetrating radar, geological and geomorphological data. J. Struct. Geol., 2020, vol. 141 (104209), pp. 1-15. https://doi.org/10.1016/j.jsg.2020.104209
  18. Behringer R.P., Howell D., Kondic L., Tennakoon S., Veje Ch. Predictability and Granular Materials. Physica D, 1999, vol. 133, pp. 1-17. https://doi.org/10.1016/S0167-2789(99)00094-9
  19. Blanton C.M., Rockwell T.K., Contz A., Kelly J.T. Refining the spatial and temporal signatures of creep and co-seismic slip along the southern San Andreas Fault using very high resolution UAS imagery and SfM-derived topography, Coachella Valley, California. Geomorphology, 2020, vol. 357, pp. 1-21. https://doi.org/10.1016/j.geomorph.2020.107064
  20. Westoby M.J., Brasington J., Glasser N.F., Hambrey M.J., Reynolds J.M. ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience application. Geomorphology, 2012, vol. 179, pp. 300-314

Full text (russian)