«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2025. Vol 54

Field Testing of Autonomous Meter of Vertical Distribution of Hydrophysical Parameters in Lake Baikal

Author(s)

I. A. Aslamov1, K. M. Kucher1, M. Yu. Shikhovtsev1,2, R. R. Mirgazov3, M. M. Makarov1

Limnological Institute SB RAS, Irkutsk, Russian Federation

V.M. Matrosov Institute of System Dynamics and Control Theory SB RAS, Irkutsk, Russian Federation

Irkutsk State University, Irkutsk, Russian Federation

Abstract
The paper presents an autonomous instrument designed for long-term monitoring of the vertical distribution of hydrophysical parameters in aquatic environments. Special attention is given to conducting field testing of the developed instruments in the coastal zone of Lake Baikal and to a detailed analysis of the obtained hydrophysical data.The device provides synchronous measurements of water temperature, underwater illumination, water level, and wave intensity. Its modular architecture–combining a distributed sensor line with a data-logging unit equipped with thermally compensated real-time clocks and an energy-efficient power system ensures precise temporal alignment of all data channels at sampling rates of up to 1 Hz, while enabling more than one year of autonomous operation. The article details the engineering solutions implemented in the device, including sensor selection, electronic design features, structural components, and metrological characteristics. Results from field trials of two prototype units deployed in the littoral zone of Southern Baikal during the summer–autumn period of 2024 are presented. The collected dataset captured a wide range of hydrophysical processes, from the development and breakdown of thermal stratification to episodes of coastal upwelling and shifts in the seiche oscillation regime. Combined analysis of temperature profiles and hydro-optical measurements demonstrated the high sensitivity of the instrument to the dynamics and transparency of water masses. Field results confirm that the developed system is an reliable, cost-efficient, and technologically advanced tool for comprehensive hydrophysical monitoring. Its implementation enables the expansion of observational networks on Lake Baikal and supports the acquisition of long, internally consistent data series essential for tracking hydrophysical variability in the lake and assessing emerging climate-driven trends as the dataset accumulates.
About the Authors

Aslamov Ilya Aleksandrovich, Candidate of Sciences (Physics and Mathematics), Senior Research Scientist Limnological Institute SB RAS 3, Ulan Batorskaya st., Irkutsk, 664033, Russian Federation e-mail: ilya_aslamov@bk.ru

Kucher Konstantin Miroslavovich, Electronics Engineer Limnological Institute SB RAS 3, Ulan Batorskaya st., Irkutsk, 664033, Russian Federation e-mail: kost@hlserver.lin.irk.ru 

Shikhovtsev Maksim Yurievich, Candidate of Sciences (Geography), Junior Research Scientist Limnological Institute SB RAS 3, Ulan Batorskaya st., Irkutsk, 664033, Russian Federation Junior Research Scientist V. M. Matrosov Institute of System Dynamics and Control Theory SB RAS 134, Lermontov st., Irkutsk, 664033, Russian Federation e-mail: max97irk@yandex.ru 

Mirgazov Rashid Ramzelevich, Senior Research Scientist Irkutsk State University 1, K. Marx st., Irkutsk, 664003, Russian Federation e-mail: mrashid777@rambler.ru 

Makarov Mikhail Mikhailovich, Candidate of Sciences (Geography), Senior Research Scientist Limnological institute SB RAS 3, Ulan Batorskaya st., Irkutsk, 664033, Russian Federation e-mail: mmmsoft@hlserver.lin.irk.ru

For citation
Aslamov I.A., Kucher K.M., Shikhovtsev M.Yu., Mirgazov R.R., Makarov M.M. Field Testing of Autonomous Meter of Vertical Distribution of Hydrophysical Parameters in Lake Baikal. The Bulletin of Irkutsk State University. Series Earth Sciences, 2025, vol. 54, pp. 22-38. https://doi.org/10.26516/2073-3402.2025.54.22 (in Russian)
Keywords
water temperature, water level, wave activity, illumination, thermistor chain, monitoring, Baikal.
UDC
556.024:556.043:556.08:556.551(571.53)
DOI
https://doi.org/10.26516/2073-3402.2025.54.22
References
  1. Gershanovich D.E., Muromcev A.M. Okeanologicheskie osnovy biohimicheskoj produktivnosti Mirovogo okeana [Oceanological foundations of the biochemical productivity of the World Ocean]. Leningrad, Gidrometeoizdat Publ., 1982, 319 p. (in Russian) 
  2. Gusev A.M. Osnovy okeanologii [Fundamentals of Oceanology]. Moscow, MSU Publ., 1987, 247 p. (in Russian) 
  3. Izmajlova A.V., Fuksova T.V., Dubrovskaja K.A. Mnogoletnie izmenenija osnovnyh sostavljajushhih prihodnoj chasti vodnogo balansa krupnejshih vodohranilishh aziatskoj territorii Rossii [Long-term variations of the main inflow components in the water balance of the largest reservoirs in the Asian territory of Russia]. Vodnoe hozjajstvo Rossii: problemy, tehnologii, upravlenie.[Water Management in Russia: Problems, Technologies, Governance], 2023, no. 3, pp. 14-16. https://doi.org/10.35567/19994508_2023_3_4 (in Russina) 
  4. Karnauhova G.A. Obstanovki osadkonakoplenija i osobennosti sostava donnyh otlozhenij v Angarskih vodohranilishhah [Sedimentation environments and composition features of bottom sediments in the Angara reservoirs]. Otechestvennaja geologija [Russian Geology], 2019, no. 3, pp. 74- 82. (in Russian) 
  5. Podlipenskaja L.E., Bakumenko Ju.S. Issledovanie processov jevtrofikacii i samoochishhenija vodoemov [Investigation of eutrophication and self-purification processes in water bodies]. Jekologicheskij vestnik Donbassa [Ecological Bulletin of Donbass], 2021, no. 1, pp. 10-18. (in Russian) 
  6. Smirnov G.V., Olenin A.L. Morskie informacionno-izmeritel'nye sistemy i novye kanaly izmerenija gidrofizicheskih parametrov [Marine Information-Measuring Systems and New Channels for Measuring Hydrophysical Parameters]. Okeanologija. [Oceanology], 2015, vol. 55, no. 2, pp. 321-325. (in Russian) 
  7. Tiberti R., Caroni R., Cannata M. et al. Automated high frequency monitoring of Lake Maggiore through in situ sensors: system design, field test and data quality control. Journal of Limnology, 2021, vol. 80, no. 2. 
  8. Marcé R., George G., Buscarinu P. et al. Automatic High Frequency Monitoring for Improved Lake and Reservoir Management. Environmental Science & Technology, 2016, vol. 50, no. 20, pp. 10780-10794. https://doi.org/10.1021/acs.est.6b01604 
  9. Belykh O.I., Pomazkina G.V., Tikhonova I.V. et al. Characteristics of Lake Baikal summer phytoplankton and autotrophic picoplankton. International Journal on Algae, 2007, vol. 9, no. 3, pp. 247-263. 
  10. Wei B., Kusch S., Hanebuth T.J.J. et al. Coastal Erosion as a Major Sediment Source in the Inner Gulf of Thailand: Implications for Carbon Dynamics in Tropical Coastal Ocean Systems. Geophysical Research Letters, 2025, vol. 52, no. 10, art. e2025GL115606. 
  11. Park Y., Seo S., Kim D.G., et al. Coastal Observation Using a Vertical Profiling System at the Southern Coast of Korea. Frontiers in Marine Science, 2021, vol. 8. 
  12. Zhang Z., Gao J., Wang J. et al. Contributions of Tropical Cyclones and Internal Tides To Deep Near‐Inertial Kinetic Energy Under Eddy Modulation. Geophysical Research Letters, 2024, vol. 51, no. 24, pp. 1-9. 
  13. Gaisky P.V., Kozlov I.E. Thermoprofilemeter for measuring the vertical temperature distribution in the upper 100-meter layer of the sea and its testing in the Arctic basin. Ecol. Saf. Coast. Shelf Zones Sea, 2023, no. 1, pp. 137-145. 
  14. Golubkov M., Golubkov S. Patterns of the relationship between the Secchi disk depth and the optical characteristics of water in the Neva Estuary (Baltic Sea): the influence of environmental variables. Frontiers in Marine Science, 2024, vol. 11, pp. 1265382-1265397. 
  15. Cherif I., Cherqui F., Perret F., et al. LevelWAN: a cost-effective, open-source IoT system for water level monitoring in highly dynamic aquatic environments. HardwareX, 2025, vol. 23, pp. e00685. 
  16. Liu M., Park J., Santamarina J.C. Stratified water columns: homogenization and interface evolution. Scientific Reports, 2024, vol. 14, art. 11453. https://doi.org/10.1038/s41598-024-62035-w
  17. Makarov M.M., Aslamov I.A., Gnatovsky R.Yu. Environmental Monitoring of the Littoral Zone of Lake Baikal Using a Network of Automatic Hydro-Meteorological Stations: Development and Trial Run. Sensors, 2021, vol. 21, no. 22, pp. 7659-7673. https://doi.org/10.3390/s21227659
  18. van Wiechen P., Rutten J., de Vries S. et al. Measurements of dune erosion processes during the RealDune/REFLEX experiments. Scientific data, 2024, vol. 11, no. 1, pp. 421-439. 
  19. Johnson M.F., Albertson L.K., Algar A.C. et al. Rising water temperature in rivers: Ecological impacts and future resilience. Wiley Interdisciplinary Reviews Water, 2024, vol. 11, no. 4, art. e1724. 
  20. Ryabov E., Tarashansky B. Monitoring of optical properties of deep lake water. Journal of Instrumentation, 2021, vol. 16, art. C09001. https://doi.org/10.1088/1748-0221/16/09/C09001
  21. Smirnov S.V., Kucher K.M., Granin N.G., et al. Seiche oscillations in Lake Baikal. Izv. Atmos. Ocean. Phys, 2014, vol. 50, no. 1, pp. 92-102. https://doi.org/10.1134/S0001433813050125
  22. Stefanidis K., Papastergiadou E. Ecological Monitoring and Assessment of Freshwater Ecosystems: New Trends and Future Challenges. Water, 2024, vol. 16, no. 11, pp. 1460–1468. 



Full text (russian)