«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2025. Vol 54

Changes in the Characteristics of Heat Waves in the Irkutsk Region

Author(s)

Е. А. Kochugova1, 2, G. F. Yakimova1

Irkutsk State University, Irkutsk, Russian Federation

V. B. Sochava Institute of Geography SB RAS, Irkutsk, Russian Federation

Abstract
The article is devoted to the study of changes in duration and recurrence of heat waves in Irkutsk region, which are a significant component of global climate change process. The authors conducted an extensive analysis of observations on maximum air temperature during summer seasons from 1960 to 2023. It was found that the average number of thermal periods with temperatures above 25 °C has increased in many regions of Irkutsk area. A particularly noticeable increase occurred over the last decade, especially notable were years such as 2017, 2019, and 2021, marked by record indicators for both duration and intensity of heat waves. The most intense rise in cases of anomalously high temperatures occurs at meteorological stations Zhegalovo and Chervyanka. Three phases have been identified in the evolution of heat wave characteristics. The first phase covers the beginning of observation period (the 1960s–1970s), characterized by growth in the number of heat waves; the second phase (late 1970s – early 1980s) features their decline in activity; while the third phase (started in late 1980s) sees stable increases in mean temperature along with prolonged hot spells. Episodes of abnormal heat occur most frequently in July, accounting for 51 % of total days with this phenomenon throughout the summer season. The most intensive heat waves took place in 2019, 2017, and 2015, having the greatest impact on population and ecology due to their long continuous durations.
About the Authors

Kochugova Elena Alexandrovna, Candidate of Science (Geography), Associate Professor of the Department of Meteorology and Physics of Near-Earth Space Irkutsk State University 1, K. Marx st., Irkutsk, 664003, Russian Federation Research Scientist, Laboratory of Hydrology and Climatology V. B. Sochava Institute of Geography SB RAS 1, Ulan-Batorskaya st., Irkutsk, 664033, Russian Federation e-mail: kochugovae@mail.ru 

Yakimova Galina Fedorovna, Student, Geographical Faculty Irkutsk State University 1, K. Marx st., Irkutsk, 664003, Russian Federation e-mail: galinabarlukova1061@gmail.com

For citation
Kochugova E.A., Yakimova G.F. Changes in the Characteristics of Heat Waves in the Irkutsk Region. The Bulletin of Irkutsk State University. Series Earth Sciences, 2025, vol. 54, pp. 118-131. https://doi.org/10.26516/2073-3402.2025.54.118 (in Russian)
Keywords
heat waves, intensity, maximum air temperature, global warming, Irkutsk region.
UDC
551.524(571.53)
DOI
https://doi.org/10.26516/2073-3402.2025.54.118
References
  1. Bardin M.YU., Platova T.V., Samohina O.F. Ekstremalnye volny tepla i ekstremalnye letnie sezony v evropejskoj chasti Rossii. [Extreme heat waves and extreme summers in European Russia]. Meteorologiya i gidrologiya [Meteorologiya i Gidrologiya], 2024, no. 6, pp. 5-25. https://doi.org/10.52002/0130-2906-2024-6-5-25. (in Russian) 
  2. Vinogradova V.V. Volny tepla na territorii Rossii kak faktor diskomfortnosti prirodnoj sredy. [Heat waves in Russia as the uncomfortable factor of the environment]. Izvestiya RAN. Seriya Geograficheskaya [Izvestia RAS. Geographical Series], 2017, no. 4, pp. 68-77. https://doi.org/10.7868/S0373244417040065 (in Russian) 
  3. Gruza G.V., Rankova E.YA. Ocenka vozmozhnogo vklada globalnogo potepleniya v genezis ekstremal'no zharkih letnih sezonov na Evropejskoj territorii RF. [Assessment of the possible contribution of global warming to the genesis of extremely hot summer seasons in the European territory of the Russian Federation]. Izvestiya RAN. Fizika atmosfery i okeana [Izvestiya, Atmospheric and Oceanic Physics], 2011, vol. 47, no. 6, pp. 717-721. (in Russian) 
  4. Bondur V.G., Mohov I.I., Voronova O.S. et al. Kosmicheskij monitoring sibirskih pozharov i ih posledstvij: osobennosti anomalij 2019 g. i tendencii 20-letnih izmenenij. [Satellite monitoring of wildfires in Siberia and their effects: features of 2019 anomalies and trend of 20-year changes]. Doklady RAN. Nauki o Zemle [Doklady Earth Sciences], 2020, vol. 492, no. 1, pp. 99-106. https://doi.org/10.31857/S2686739720050047 (in Russian) 
  5. Mohov I.I., Smirnov D.A. Empiricheskie ocenki vklada parnikovyh gazov i estestvennoj klimaticheskoj izmenchivosti v trendy pripoverhnostnoj temperatury dlya razlichnyh shirot [Empirical estimates of the contribution of greenhouse gases and natural climatic variability to near-surface temperature trends for different latitudes]. Doklady RAN. Nauki o Zemle [Doklady Earth Sciences], 2020, vol. 503, no. 1, pp. 48-54. https://doi.org/10.31857/S2686739722030082 (in Russian) 
  6. Mohov I.I., Timazhev A.V. Integralnyj indeks aktivnosti atmosfernyh blokirovanij v Severnom polusharii v poslednie desyatiletiya [Integral Index of Atmospheric Blocking Activity in the Northern Hemisphere in Recent Decades]. Izvestiya RAN. Fizika atmosfery i okeana [Izvestiya, Atmospheric and Oceanic Physics], 2022, vol. 58, no. 6, pp. 638-647. https://doi.org/10.31857/S0002351522060116 (in Russian) 
  7. Kruglova E.N., Kulikova I.A., Tishchenko V.A. et. al. Prognozirovanie voln tepla na vnutrisezonnyh masshtabah vremeni. [Forecasting of Heat Waves on Subseasonak Timescales]. Gidrometeorologicheskie issledovaniya i prognozy [Hydrometeorological Research and Forecasting], 2019, no. 1 (371), pp. 95-108. (in Russian) 
  8. Rocheva E.V., Smirnov V.D. O tendenciyah v izmeneniyah prodolzhitelnosti “voln tepla” na territorii Rossii. [On trends in changes in the duration of “heat waves” in Russia]. Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem [Problems of Ecological Monitoring and Ecosystem modelling], 2013, vol. 25, pp. 94-114. (in Russian) 
  9. Sokolov YU.I. Pozharnye riski Rossii. [Fire risks in Russia]. Problemy analiza riskov [Issues of risk analysis], 2016, vol. 13, no. 5, pp. 52–71. https://doi.org/10.32686/1812-5220-2016-13-5-52-71. (in Russian) 
  10. Lupo A.R., Jensen A.D., Mokhov I.I. et al. Changes in global blocking character during recent decades. Atmosphere, 2019, vоl. 10, no. 2, p. 92. https://doi.org/10.3390/atmos10020092 
  11. Cheng J., Yang D., Qie K. et al. Analysis of land surface temperature drivers in Beijing’s central urban area across multiple spatial scales: An explainable ensemble learning approach. Energy and Buildings, 2025, vol. 338. https://doi.org/10.1016/j.enbuild.2025.115704
  12. Yan S., Tett S., Fréchet N. et al. Changes in regional wet heatwave in Eurasia during summer (1979-2017). Environmental Research Letters, 2021, vol. 16, no. 6. http://dx.doi.org/10.1088/1748-9326/ac0745
  13. Mora C., Dousset В., Caldwell I. R. et al. Global risk of deadly heat. Nature Climate Change, 2017, vol. 7, pp. 501-506. https://doi.org/10.1038/nclimate3322
  14. Kopp С., Kovats S., Jendritzky G. et al. Heat-waves: risks and responses. Copenha-gen, WHO Regional Office for Europe, 2004, 124 p. 
  15. Kwon Y.-O., Seo H., Ummenhofer C.C. et al. Impact of multidecadal variability in Atlantic SST on winter atmospheric blocking. Journal of Climate, 2020, vol. 33, pp. 867-892. 
  16. Masson-Delmotte V., Zhai P., Pörtner H.-O. et al. (eds). IPCC, 2018: Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge University Press, Cambridge, UK and New York, NY, USA, 2018, 616 p. https://doi.org/10.1017/9781009157940
  17. Pan X., Wang G., Yang P. Introducing driving-force information increases the predicta-bility of the North Atlantic Oscillation. Atmospheric and Oceanic Science Letters, 2019, vol. 12, no. 5, pp. 329–336. http://dx.doi.org/10.1080/16742834.2019.1628608
  18. Mokhov I.I., Sitnov S.A., Tsidilina M.N. et al. Relation between pyrogenic NO2 emissions from wildfires in Russia and atmospheric blocking events. Atmosphere and ocean optics, 2021, vol. 34, no. 5, pp. 503-506. https://doi.org/10.1134/S1024856021050146

Full text (russian)