«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2025. Vol 54

Estimation of Atmospheric Boundary Layer Height in Perm According to the Rawinsonde Measurements

Author(s)

Ye. Yu. Fedurin, N. A. Kalinin 

Perm State University, Perm, Russian Federation

Abstract

Methods of estimation of the atmospheric boundary layer height according to the rawinsonde measurements are considered. Calculations based on the data obtained during observations from the Perm land-based rawinsonde station for the period 2018 to 2024. The atmospheric boundary layer height was estimated based on calculations of the bulk Richardson number and the vertical gradient of the virtual potential temperature. The critical value of the Richardson number indicates atmospheric stability and turbulence. The first point at which the value of bulk Richardson number first reached the critical value is taken as the atmospheric boundary layer height. In other words, the atmospheric boundary layer it is the most turbulent layer of the atmosphere. The article suggests using four critical values of the Richardson number RiBC = {0,1; 0,25; 0,5; 1,0}. The critical value of the Richardson number RiBC = 1,0 shows the most accurate values of the atmospheric boundary layer height. It was determined that the maximum thickness of the atmospheric boundary layer is observed during daytime in summer (1800 m), and the minimum at nighttime in summer (500 m). Moreover, during daytime there is a trend of increasing of the atmospheric boundary layer height from winter to summer, and at nighttime the atmospheric boundary layer height has maximum values in the spring and autumn. Virtual potential temperature profiles are nearly adiabatic in the atmospheric boundary layer. The first point at which the vertical gradient of the virtual potential temperature becomes non-adiabatic is taken as the height of the atmospheric boundary layer. The article shows that values of the atmospheric boundary layer height based on calculations of the vertical gradient of the virtual potential temperature are too large. The use of the considered methods allows to estimate the atmospheric boundary layer height based on the rawinsonde data without making additional measurements, and these methods can be used to study the atmospheric processes occurring in this layer.

About the Authors

Fedurin Yegor Yurievich, Postgraduate, Department of Meteorology and Atmosphere Protection Perm State University 15, Bukirev st., Perm, 614068, Russian Federation e-mail: egor.fedurin@gmail.com 

Kalinin Nikolay Aleksandrovich, Doctor of Sciences (Geography), Professor of the Department of Meteorology and Atmosphere Protection Perm State University 15, Bukirev st., Perm, 614068, Russian Federation e-mail: kalinin@psu.ru

For citation
Fedurin Ye.Yu., Kalinin N.A. Estimation of Atmospheric Boundary Layer Height in Perm According to the Rawinsonde Measurements. The Bulletin of Irkutsk State University. Series Earth Sciences, 2025, vol. 54, pp. 105-117. https://doi.org/10.26516/2073-3402.2025.54.105 (in Russian)
Keywords
richardson number, potential temperature, atmospheric boundary layer, rawinsonde measurements, turbulence.
UDC
551.551(470.53)
DOI
https://doi.org/10.26516/2073-3402.2025.54.105
References
  1. Vorontsov P.A. Aerologicheskiye issledovaniya pogranichnogo sloya atmosfery [Aerological studies of the atmospheric boundary layer]. Leningrad, Gidrometeoizdat Publ., 1960, 455 p. (in Russian) 
  2. Kalinin N.A. Fizicheskaya meteorologiya [Physical Meteorology]. Textbook. Perm, Perm State University Publ., 2023, 257 p. (in Russian) 
  3. Klyuchnikova L.A., Laykhtman D.L., Tseytin T.KH. K voprosu o raschete vertikal'nogo profilya vetra v pogranichnom sloye atmosfery [On the issue of calculating the vertical wind profile in the boundary layer of the atmosphere]. Trudy GGO. Fizika pogranichnogo sloya atmosfery [Proceedings of the GGO. Physics of the boundary layer of the atmosphere], 1965, no. 167, pp. 3-28. (in Russian) 
  4. Stepanenko S.N., Voloshin V.G., Kuryshina V.YU. et al. Opredeleniye vysoty pogranichnogo sloya atmosfery po nazemnym meteorologicheskim nablyudeniyam [Determination of the height of the boundary layer of the atmosphere from ground meteorological observations]. ScienceRise [ScienceRise], 2016, vol. 7, no. 1 (24), pp. 6–10. (in Russian) 
  5. Voskanyan K.L., Yekaterinicheva N.K., Kuznetsov A.D. et al. Praktikum po aerologicheskim metodam zondirovaniya okruzhayushchey sredy [Workshop on Aerological Methods of Environmental Sensing: Training Manual]. St. Petersburg, RGGMU Publ, 2020, 268 p. (in Russian) 
  6. Rid R., Prausnits Dzh., Shervud T. Svoystva gazov i zhidkostey. Spravochnoye posobiye [Properties of gases and liquids. Reference manual]. Translation from English]. Leningrad, Chemistry Publ, 1982, 592 p. (in Russian) 
  7. Zilitinkevich S.S., Tyuryakov S.A., Troitskaya YU.I. et al. Teoreticheskiye modeli vysoty pogranichnogo sloya atmosfery i turbulentnogo vovlecheniya na yego verkhney granitse [Theoretical models of the height of the boundary layer of the atmosphere and turbulent involvement at its upper boundary]. Izvestiya RAN. Fizika atmosfery i okeana [News of the Russian Academy of Sciences. Atmospheric and ocean physics], 2012, vol. 48, no. 1, pp. 150-159. (in Russian) 
  8. Golovina YE.G., Abannikov V.N., Aayed Mkhanna I.N. et al. Uchebnoye posobiye “Osnovy termodinamiki atmosfery” po distsipline “Fizika atmosfery” [Tutorial “Fundamentals of Atmospheric Thermodynamics” in the discipline “Atmospheric Physics”]. St. Petersburg, Nits Art Publ, 2022, 61 p. (in Russian) 
  9. Shved G.M. Vvedeniye v dinamiku i energetiku atmosfery [Introduction to the dynamics and energy of the atmosphere: tutory. manual]. St. Petersburg, St. Petersburg University Publ., 2020, 396 p. (in Russian) 
  10. Shishkin G.I., Gur'yanov V.V. Vysota pogranichnogo sloya atmosfery i tendentsii yeyo izmeneniya na territorii Privolzhskogo federalnogo okruga [The height of the boundary layer of the atmosphere and its trends in the Volga Federal District]. Vestnik Udmurtskogo universiteta. Seriya biologiya. Nauki o Zemle [Bulletin of Udmurt University. Series biology. Earth Sciences], 2023, vol. 33, no. 3, pp. 312-317. (in Russian) 
  11. Aliabadi A.A., Staebler R.M., Liu M. et al. Comparison of Estimated Atmospheric Boundary Layer Mixing Height in the Arctic and Southern Great Plains under Statically Stable Conditions: Experimental and Numerical Aspects. Atmosphere-Ocean, 2016, vol. 54, no. 1, pp. 60-74. https://doi.org/10.1080/07055900.2015.1119100
  12. Kumar M., Mallik C., Kumar A. et al. Evaluation of the boundary layer depth in semi-arid region of India. Dynamics of Atmospheres and Oceans, 2010, vol. 49, no. 2-3, pp. 96-107. https://doi.org/10.1016/j.dynatmoce.2009.01.002
  13. Guide to Instruments and Methods of Observation. Vol. 1. Measurement of Meteorological Variables (WMO-No. 8). Geneva, WMO Publ., 2023, vol. 1, 571 p. 
  14. Holtslag A.A.M., De Bruijn E.I.F., Pan H.-L. A High Resolution Air Mass Transformation Model for Short-Range Weather Forecasting. Mon. Wea. Rev., 1990, vol. 118, no. 8, pp. 1561-1575. https://doi.org/10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2
  15. Mahrt L. Stratified Atmospheric Boundary Layers. Boundary-Layer Meteorology, 1999, vol. 90, no. 3, pp. 375-396. https://doi.org/10.1023/A:1001765727956
  16. Markowski P., Richardson Y. Mesoscale meteorology in midlatitudes. Chichester, WileyBlackwell, 2010, 430 p. 
  17. Zhang Y., Gao Z., Li D. et al. On the computation of planetary boundary layer height using the bulk Richardson number method. Geoscientific Model Development, 2014, vol. 7, no. 6, pp. 4045- 4079. https://doi.org/10.5194/gmdd-7-4045-2014
  18. Sonntag D. Fortschritte in der Hygrometrie. Meteorologische Zeitschrift, 1994, vol. 3, no. 2, pp. 51-66. https://doi.org/10.1127/metz/3/1994/51
  19. Su T., Zheng Y., Li Z. Methodology to determine the coupling of continental clouds with surface and boundary layer height under cloudy conditions from lidar and meteorological data. Atmos. Chem. Phys., 2022, vol. 22, no. 2, pp. 1453-1466. https://doi.org/10.5194/acp-22-1453-2022 
  20. Tennekes H. A Model for the Dynamics of the Inversion Above a Convective Boundary Layer. J. Atmos. Sci., 1973, vol. 30, no. 4, pp. 558-567. https://doi.org/10.1175/1520-0469(1973)030<0558:AMFTDO>2.0.CO;2
  21. Troen I.B., Mahrt L. A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Boundary-Layer Meteorol., 1986, vol. 37, no. 1-2, pp. 129-148. https://doi.org/10.1007/BF00122760
  22. Vickers D., Mahrt L. Evaluating Formulations of Stable Boundary Layer Height. Journal of Applied Meteorology, 2004, vol. 43, no. 11, pp. 1736-1749. https://doi.org/10.1175/JAM2160.1
  23. Zhang D., Anthes R.A. A High-Resolution Model of the Planetary Boundary Layer–Sensitivity Tests and Comparisons with SESAME-79 Data. J. Appl. Meteor., 1982, vol. 21, no. 11, pp. 1594-1609. https://doi.org/10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2 
  24. Stull R.B. An introduction to boundary layer meteorology. Reprinted. Dordrecht, Springer, 2009. 670 p. 
  25. Zilitinkevich S., Baklanov A. Calculation of the height of the stable boundary layer in practical applications. Boundary-Layer Meteorol., 2002, vol. 105, no. 3, pp. 389–409. https://doi.org/10.1023/A:1020376832738



Full text (russian)