«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2025. Vol 54

Features of Apatite Crystallization from Granites of the Kuzpuayu Massif (the Subpolar Urals)

Author(s)

Yu. V. Denisova1

1 Institute of Geology named after academician N. P. Yuskin Komi SC UB RAS, Syktyvkar, Russian Federation

Abstract
The study presents the results of research on apatite from rocks of the Kuzpuayu massif, which belongs to the Salnero-Mankhambov granitoid complex of the Subpolar Urals. The investigation identified apatite with hexagonal prismatic and hexagonal dipyramidal-prismatic habits. A detailed study of the mineral's morphology and chemical composition made it possible to establish two main morphological types of apatite with a division into five subtypes, and to trace the evolution of the crystals. During the early magmatic stages, tabular type II apatites with low water content crystal- For complete information about the author, see the last page of the article. lized from a high-temperature (from 893 °C), fluorine-enriched melt. As the system evolved and the activity of aqueous fluids increased during later stages at lower temperatures (down to 727 °C), prismatic type I apatites, enriched in water and sodium, were formed.
About the Authors
Denisova Yulia Vjacheslavovna, Junior Research Scientist Institute of Geology Named after Academician N. P. Yuskin Komi SC UB RAS 54, Pervomayskaya st., Syktyvkar, 167982, Russian Federation e-mail: yulden777@yandex.ru
For citation
Denisova Yu.V. Features of Apatite Crystallization from Granites of the Kuzpuayu Massif (the Subpolar Urals). The Bulletin of Irkutsk State University. Series Earth Sciences, 2025, vol. 54, pp. 132-148. https://doi.org/10.26516/2073-3402.2025.54.132 (in Russian)
Keywords
apatite, granite, saturation temperature, the Kuzpuayu massif, the Subpolar Urals.
UDC
552.321.1+552.113+550.425+549.753.11(234.851)
DOI
https://doi.org/10.26516/2073-3402.2025.54.132
References
  1. Pystin A.M., Grakova O.V., Pystina Yu.I., Kushmanova E.V., Popvasev K.S., Xubanov V.B. Vozrastny`e ogranicheniya i vozmozhny`e istochniki snosabazal`ny`x otlozhenij rifeya Pripolyarnogo Urala [Age restrictions and possible sources of demolition of the Riphean basal sediments of the Circumpolar Urals]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Geologiya [Proceedings of Voronezh State University. Series: Geology], 2023, no. 4, pp. 4-17. https://doi.org/10.17308/geology/1609-0691/2023/4/4-17 (in Russian) 
  2. Efremova S.V., Stafeev K.G. Petrokhimicheskie metodi issledovaniya gornikh porod [Petrochemical methods of rock research]. Moscow, Nedra Publ., 1985. 512 p. (in Russian) 
  3. Denisova Yu.V. Temperaturnii rezhim formirovaniya granitov Kuzpuayuskogo massiva (Pripolyarnii Ural) po tsirkonu [Temperature regime of granite formation in the Kuzpuy massif (the Subpolar Urals) according to zircon]. Geological studies of the Urals and the Volga region, 2020, no. 8, pp. 43-45. (in Russian) 
  4. Denisova Yu.V. T-usloviya obrazovaniya granitov Kuzpuayuskogo massiva (Pripolyarnii Ural) po monatsitu [T-conditions of formation of granites of the Kuzpuy massif (the Subpolar Urals) according to monazite]. Structure, substance and history of the lithosphere of the Timan-North Ural segment. Proceedings of the 30th Scientific Conference, 2021, pp. 60-62. (in Russian) 
  5. Makrygina V.A. Geoximiya otdelnyh elementov [Geochemistry of individual elements]. Novosibirsk, Geo Publ., 2011, 195 p. (in Russian) 
  6. Goryainov V.B., Pavlov I.V., Czvetkova G.M., Teskin O.I. Matematicheskaya statistika, Matematika v texnicheskom universitete. Vyp. XVII [Mathematical statistics, Mathematics at the Technical University. Iss. 17]. Moscow, Bauman Moscow State Technical University Publ., 2001, 424 p. (in Russian) 
  7. Mahlaev L.V. Granitoidy severa Cenralno-Uralskogo podnyatiya (Polyarnyj i Pripolyarnyj Ural) [Granitoids of the north of the Central Ural Uplift (the Polar and the Subpolar Urals)]. Ekaterinburg, UrO RAS Publ., 1996, 189 p. (in Russian) 
  8. Fishman M.V., Yushkin N.P., Goldin B.A., Kalinin E.P. Mineralogiya, tipomorfizm i genezis aktsessornikh mineralov izverzhennikh porod severa Urala i Timana [Mineralogy, typomorphism and genesis of accessory minerals from igneous rocks of the Northern Urals and Timan]. Moscow, Leningrad, Nauka Publ., 1968, 252 p. (in Russian) 
  9. Ostapenko P.E. Texnologicheskaya ocenka mineralnogo syrjya, nerudnoe syryo [Technological assessment of mineral raw materials, non-metallic raw material]. St. Petersburg, Nauka Publ., 1995, 261 p. (in Russian) 
  10. Dubinin V.S., Kudelina I.V., Leontieva T. V., Chernykh N.V. Petroximicheskij analiz magmaticheskix gornyh porod [Petrochemical analysis of igneous rocks]. Orenburg, GOU OGU Publ., 2008, 109 p. (in Russian) 
  11. Pystin A.M., Pystina Yu.I. Metamorfizm i granitoobrazovanie v proterozojsko- rannepaleozojskoj istorii formirovaniya Pripolyarnoural'skogo segmenta zemnoj kory [Metamorphism and granite formation in the Proterozoic-Early Paleozoic history of the formation of the Subpolar Urals segment of the Earth's crust]. Litosfera [Lithosphere], 2008. no. 11, pp. 25-38. (in Russian) 
  12. Rodionov D.A., Kogan R.I., Golubeva V.A., Smirnov B.I., Sirotinskaya S.V. Spravochnik po matematicheskim metodam v geologii [Textbook of Mathematical Methods in Geology]. Moscow, Nedra Publ., 1987, 233 p. (in Russian) 
  13. Yudovich Ya.E., Ketris M.P., Rybina N.V. Obmanshchik- apatit – unikalnii indikator materinskikh gornikh porod i rud, a takzhe petro-, lito- i rudogeneza [The deceiver- apatite is a unique indicator of parent rocks and ores, as well as petro-, litho- and oreogenesis]. Ural Geological Journal, 2022, no. 1 (145), pp. 3-87. (in Russian) 
  14. Brown W.L., Parsons, I. Towards a more practical two-feldspar geothermometer. Contr. Mineral. and Petrol., 1981, no. 76, pp. 369-377. https://doi.org/10.1007/BF00371478
  15. Chappel B.W., Whitte A-J. R. Two contrasting granite types. Pacif. Geol., 1974, vol. 8, pp. 173-174. 
  16. Bea F., Fershtater G.B., Corretgé L.G. The geochemistry of phosphorus in granite rocks and the effects of aluminium. Lithos., 1992, no. 48, pp. 43-56. 
  17. Нarker A. The natural history of igneous rocks. Methuen. London, 1909, 452 р. https://doi.org/10.1017/CBO9780511920424 
  18. Harrison T.M., Watson E.B. The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochim. Cosmochim. Acta, 1984, no. 48, pp. 1467-1477. 
  19. Hornik K. The Comprehensive R Archive Network. WIREs. Comput Stat., 2012, no. 4, pp. 394-398. https://doi.org/10.1002/wics.1212 
  20. Hughes J.M., Cameron M., Crowley K.D. Crystal structures of natural ternary apatites: Ca2REEs3(SiO4)6O2F2. American Mineralogist, 1991, no. 76 (11-12), pp. 1855-1860. 
  21. Loiselle M.C., Wones D.R. Characteristics and origin of anorogenic granites. Abstracts of papers to be presented at the annual meetings of the Geological Society of America and Associated Societies. San Diego, California, 1979, vol. 11, p. 468. 
  22. Pichavant M., Montel J.M., Richard L.R. Apatite solubility in peraluminous liquids: experimental data and extension of the Harrison-Watson model. Geochim. Cosmochim. Acta, 1992, no. 56, pp. 3855-3861. 
  23. Rakovan J. Growth and surface properties of apatite. Reviews in Mineralogy and Geochemistry, 2002. no. 48 (1), pp. 51-86. 
  24. Rakovan J., Piatak N.M. Morphology and surface features of apatite from the Cerro de Mercado iron deposit. Rocks & Minerals, 2007, no. 82 (1), pp. 34-41. 
  25. Seck H.A. Der Einfluß des Drucks auf die Zusammensetzung koexistierender Alkalifeldspäte und Plagioclase in System NaAlSi3O8−KAlSi3O8−CaAl2Si2O8−H2O. Contrib. Mineral. Petrol., 1971, no. 31, pp. 67-86. 
  26. Webster J.D., Piccoli P.M. Magmatic Apatite: A Powerful yet Deceptive Mineral. Elements, 2015, no. 11, pp. 177-182. https://doi.org/10.2113/gselements.11.3.177



Full text (russian)