«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2025. Vol 53

Features of the spatial Distribution of Carbon Dioxide in the Atmosphere of the Steppe Landscapes (Orenburg Region, Volga-Ural Region)

Author(s)

K. V. Myachina1, A. N. Shchavelev1, R. V. Ryakhov1, R. M. Bezborodnikova1 

1 Steppe Institute UrB RAS, Orenburg, Russian Federation

Abstract
The Russian steppes play a certain role in absorbing atmospheric carbon and maintaining biospheric regulation, and therefore monitoring the climate-regulating characteristics of steppe ecosystems is relevant, including the concentration of carbon dioxide in the atmosphere. The objectives of the study are to identify the features of the atmospheric carbon dioxide spatial distribution in the Ural part of the Volga-Ural steppe region (Orenburg region) and to analyze the relationship between the carbon dioxide content in the air and meteorological characteristics. A representative network of 107 key sites has been identified for research, including the subzones of the meadow steppe, fescuefeather grass forb steppes, and poor herb fescue-feather grass steppes. During field work, measurements of atmospheric carbon dioxide concentration an altitude of 1,5–2 m, air temperature and humidity, wind speed, soil temperature and humidity were carried out at each site. The following results were obtained: carbon dioxide concentrations ranging from 0.035 to 0.065% by volume were recorded in the air mixture at the study sites. It was revealed that the index of carbon dioxide content in the studied air layer has an inverse dependence on air temperature and a direct dependence on its humidity. The formation of several territorial clusters with similar values of the desired indicator was noted in the study region. Clusters with both low and high levels of atmospheric carbon dioxide are distinguished in the zones of the fescue-feather grass forb steppes and poor herb fescue-feather grass steppes. Clusters with high values of atmospheric carbon dioxide were found in the subzones of the poor herb fescue-feather grass steppes and meadow steppe. It is assumed that the features of the spatial distribution of carbon dioxide in the air of the steppe region are mainly related to the specifics of the characteristics of steppe subzones and do not show dependence on the local landscape characteristics of key sites.
About the Authors

Myachina Ksenia Viktorovna, Doctor of Sciences (Geography), Leading Research Scientist, Head of NaturalTechnogenic Geosystems Department Institute of Steppe UB RAS 11, Pionerskaya st., Orenburg, 460000, Russian Fedeation e-mail: mavicsen@list.ru 

Shchavelev Anton Nikolaevich, Junior Research Scientist Institute of Steppe UB RAS 11, Pionerskaya st., Orenburg, 460000, Russian Fedeation e-mail: ditmark12rus@gmail.com

Ryakhov Roman Vasilyevich, Research Scientist Institute of Steppe UB RAS 11, Pionerskaya st., Orenburg, 460000, Russian Fedeation e-mail: remus.rv@gmail.com

Bezborodnikova Rosa Minullovna, Candidate of Sciences (Economic) Junior Research Scientist Institute of Steppe UB RAS 11, Pionerskaya st., Orenburg, 460000, Russian Fedeation e-mail: fiz.mme.rosa@rambler.ru

For citation
Myachina K.V., Shchavelev A.N., Ryakhov R.V., Bezborodnikova R.M. Features of the spatial Distribution of Carbon Dioxide in the Atmosphere of the Steppe Landscapes (Orenburg Region, Volga-Ural Region). The Bulletin of Irkutsk State University. Series Earth Sciences, 2025, vol. 53, pp. 84-96. https://doi.org/10.26516/2073-3402.2025.53.84(in Russian)
Keywords
carbon dioxide, atmospheric content, spatial distribution, autocorrelation of the feature, clusters, meteorological characteristics, landscapes, steppe subzones, the Ural part of the Volga-Ural steppe region.
UDC
911.9:528.8(470.56)
DOI
https://doi.org/10.26516/2073-3402.2025.53.84
References
  1. Muhartova Ju.V., Gibadullin R.R., Olchev A.V. et al. Vlijanie prostranstvennoj neodnorodnosti podstilajushhej poverhnosti na potoki parnikovyh gazov [The influence of spatial heterogeneity of the underlying surface on greenhouse gas fluxes]. Sbornik “Karbonovye poligony monitoring geoinformacionnye sistemy, sekvestracionnye tehnologii” [Proceedings “Carbon polygons monitoring geoinformation systems, sequestration technologies”]. Ed. by S.K. Gulev and A.V. Olchev. Moscow, Nauchnyj mir Publ., 2025, pp. 130-140. (in Russian) 
  2. Markelov Ju.I., Antonov K.L., Poddubnyj V.A. et al. Vremennaja izmenchivost' prizemnyh koncentracij parnikovyh gazov i rezultaty vosstanovlenija polej koncentracij po dannym izmerenij na poligone “Ural-karbon” v Sverdlovskoj oblasti [Temporal variability of ground concentrations of greenhouse gases and the results of concentration field reconstruction based on measurement data at the Ural-carbon test site in the Sverdlovsk region]. Karbonovye poligony monitoring geoinformacionnye sistemy, sekvestracionnye tehnologii [Carbon polygons monitoring geoinformation systems, sequestration technologies]. Ed. by S.K. Gulev and A.V. Olchev. Moscow, Nauchnyj mir Publ., 2025, pp. 130-140. (in Russian) 
  3. Chibiljov A.A., Petrishhev V.P., Kliment'ev A.I. et al. Geograficheskij atlas Orenburgskoj oblasti [Geographical atlas of the Orenburg region]. Ed. by A.A. Chibiljov. Moscow, DIK Publ., Orenburg, Orenburg Publ., 1999, 95 p. (in Russian) 
  4. Glagolev M.V., Shnyrev N.A. Dinamika letne-osennej jemissii SN4 estestvennymi bolotami (na primere juga Tomskoj oblasti) [Dynamics of summer-autumn CH4 emissions from natural swamps (using the example of the south of the Tomsk region)]. Vestnik MGU [Bulletin of Moscow State University], 2007, no. 1, pp. 8-14. (in Russian) 
  5. Grekusis D. Metody i praktika prostranstvennogo analiza. Opisanie, issledovanie i ob#jasnenie s ispol'zovaniem GIS [Spatial econometrics methods and evaluation of the effectiveness of government programs]. Transl. from engl. by A.N. Kiseleva. Moscow, DMK Press Publ., 2021, 540 p. (in Russian) 
  6. Myachina K.V. Analiz kosmicheskikh izobrazhenij s raschetom NDVI dlya izucheniya dinamiki landshaftnogo pokrova territorii neftyanogo mestorozhdeniya v Orenburgskoj oblasti [Analysis of satellite images with NDVI calculation for studying the dynamics of the landscape cover of the territory of an oil field in the Orenburg region]. Proceedings of the Orenburg State Agrarian University, 2013, no. 4 (42), pp. 206-209. (in Russian) 
  7. Fedorov Ju.A., Suhorukov V.V., Trubnik R.G. Analiticheskij obzor: jemissija i pogloshhenie parnikovyh gazov pochvami. Jekologicheskie problem [Analytical review: greenhouse gas emissions and uptake by soils. Environmental issues]. Antropogennaja transformacija prirodnoj sredy [Anthropogenic transformation of the natural environment], 2021, no. 1, pp. 6-34. (in Russian) 
  8. Chudinova O.S. Primenenie metodov prostranstvennogo analiza dannyh dlja issledovanija regional'nyh osobennostej differenciacii dohodov naselenija Rossii [The use of spatial data analysis methods to study the regional features of income differentiation in Russia]. Razvitie i vzaimodejstvie realnogo i finansovogo sektorov jekonomiki v uslovijah cifrovoj transformacii [Development and interaction of the real and financial sectors of the economy in the context of digital transformation]. Proceedings of the International Scientific and Practical Conference]. Orenburg, 2021, pp. 562-568. (in Russian) 
  9. Jackson M.C., Huang L., Xie Q. et al. A modified version of Moran's I. International journal of health geographics, 2010, vol. 9. pp. 1-10. 
  10. Chen Y. New approaches for calculating Moran’s index of spatial autocorrelation. PloS one, 2013. vol. 8. no. 7. pp. e68336. 
  11. Rolinski S., Prishchepov A.V., Guggenberger G. et al. Dynamics of soil organic carbon in the steppes of Russia and Kazakhstan under past and future climate and land use. Regional Environmental Change, 2021, vol. 21, pp. 1-16.]. 
  12. Getis A., Ord J.K. The analysis of spatial association by use of distance statistics. Geographical analysis, 1992, vol. 24. no. 3. pp. 189-206.
  13. Gibadullin R.R., Mukhartova I.V., Kochkina M.V. et al. Modeling the Spatial Variability of the Wind Field and CO2 and CH4 Fluxes over a Heterogeneous Surface. Russian Meteorology and Hydrology, 2024, vol. 49, no. 9, pp. 828-833. 
  14. Griffith D. A. Spatial autocorrelation. International encyclopedia of human geography, 2009, vol. 2009, pp. 308-316. 
  15. Kira T., Shidei T. Primary production and turnover of organic matter in different forest ecosystems of the Western Pacific. Jap. J. Ecol., 1967, no. 17, pp. 70-87. 
  16. Lee J., Li S. Extending Moran's index for measuring spatiotemporal clustering of geographic events. Geographical Analysis, 2017, vol. 49, no. 1, pp. 36-57. 
  17. Metropolis N., Ulam S. The Monte Carlo method. Journal of the American statistical association, 1949, vol. 44, no. 247, pp. 335-341. 
  18. Smelansky I.E., Tishkov A.A. The steppe biome in Russia: Ecosystem services, conservation status, and actual challenges. Eurasian steppes. In Ecological problems and livelihoods in a changing world. Dordrecht, Springer Netherlands, 2012, pp. 45-101. 
  19. Tang J., Luyssaert S., Richardson A.D. et al. Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth. Proceedings of the National Academy of Sciences, 2014, vol. 111, no. 24, pp. 8856-8860. 



Full text (russian)