«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2025. Vol 53

Calculation of the Morphometric Characteristics of the River Basin Relief of High and Low Plains Based on a Digital Elevation Model

Author(s)

K. A. Kuzmin1, M. E. Bukovskiy1, A. V. Voronkov1

1 Derzhavin Tambov State University, Tambov, Russian Federation 

Abstract
The article presents the results of a comparative morphometric analysis of the river basin relief, conducted on the basis of a digital elevation model (DEM) using the QGIS 3 and SAGA GIS 9 geoinformation applications. The aim of the work was to compare the degree of erosion risks in the river basins of the high and low plains. The objects of digital modeling and calculations were the Polnoy Voronezh and Chembar river basins. The first basin is located on the Oka-Don lowland plain with a relatively flat relief, the second is significantly dissected and is located within the Volga Upland. A hypsometric map was constructed and the distribution of the surface area of the basins by absolute height was shown. For the rivers Polnoy Voronezh, Chembar and their tributaries with a catchment area of more than 50 km2, the most significant morphometric variables were calculated: the shape and slope of the longitudinal profile, river fall, the depth of dissection and the average gradient of catchment slopes. The Polnoy Voronezh river basin is characterized by low risks of erosion development due to small values of dissection depth, average slopes of watercourses and catchment slopes. In the Chembar river basin, morphometric variables express a significant risk of erosion development, especially in catchment areas with an average gradient of slopes of more than 2°. Based on the principles of basin nature management, the obtained quantitative data on the relief can be useful for carrying out balance calculations of liquid and solid runoff movement within catchment areas, developing projects for soil and water protection measures, and improving the structure of land use.
About the Authors

Kuzmin Kirill Alekseevich, Research Scientist, Laboratory for Monitoring Agro-Climatic and Water-Resource Potentials of the Territories Derzhavin Tambov State University 33, Internatsionalnaya st., Tambov, 392036, Russian Federation e-mail: ka_kuzmin@mail.ru 

Bukovskiy Mikhail Evgenievich, Candidate of Sciences (Geography), Head, Laboratory for Monitoring Agro-Climatic and Water-Resource Potentials of the Territories Derzhavin Tambov State University 33, Internatsionalnaya st., Tambov, 392036, Russian Federation e-mail: mikezzz@mail.ru 

Voronkov Anton Vyacheslavovich, Postgraduate, Department of Ecology and Nature Management Derzhavin Tambov State University 33, Internatsionalnaya st., Tambov, 392036, Russian Federation e-mail: antonvoronkov123123@gmail.com

For citation
Kuzmin K.A., Bukovskiy M.E., Voronkov A.V. Calculation of the Morphometric Characteristics of the River Basin Relief of High and Low Plains Based on a Digital Elevation Model. The Bulletin of Irkutsk State University. Series Earth Sciences, 2025, vol. 53, pp. 70-83. https://doi.org/10.26516/2073-3402.2025.53.70 (in Russian)
Keywords
river basin, digital elevation model, morphometric analysis.
UDC
551.435+556.51(282.247.3)
DOI
https://doi.org/10.26516/2073-3402.2025.53.70
References
  1. Bezgodova O.V. Strukturno-morfometricheskii analiz malogo rechnogo basseina reki IkheUkhgun (bassein reki Irkut) [Structural and Morphometric Analysis of the Ihe-Ukhgun Small River Basin (Irkut River Basin)]. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Nauki o Zemle [The Bulletin of Irkutsk State University. Series Earth Sciences], 2021, vol. 37, pp. 3-16. https://doi.org/10.26516/2073-3402.2021.37.3 (in Russian) 
  2. Bukovskiy M.E., Kuzmin K.A. Otsenka tochnosti obshchedostupnykh tsifrovykh modelei rel'efa po absolyutnoi vysote dlya ravninnykh territorii lesostepnoi zony [Assessment of the accuracy of publicly available digital elevation models by absolute height for plain territories of the forest-steppe zone]. Geosfernye issledovaniya [Geosphere Research], 2024, no. 4, pp. 73-86. https://doi.org/10.17223/25421379/33/5 (in Russian) 
  3. Galtseva E.V., Smolyaninov V.M., Shmykov V.I. Izuchenie prirodnykh uslovii i antropogennogo vozdeistviya na zemelnye resursy pri provedenii landshaftno-ekologicheskogo zemleustroistva na Pravoberezh'e Dona v predelakh Voronezhskoi oblasti [Study of natural conditions and anthropogenic impact on land resources during landscape-ecological land management on the Right Bank of the Don within the Voronezh Region]. Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta [Bulletin of the Voronezh State Agrarian University], 2012, no. 2 (33), pp. 304-310. (in Russian) 
  4. Korytny L.M. Geograficheskii podkhod k Naukam o Vode [Geographical Approach to Water Sciences]. Geografiya i prirodnye resursy [Geography and Natural Resources], 2021, vol. 42, no. 3, pp. 13-22. https://doi.org/10.15372/GIPR20210302 (in Russian) 
  5. Makkaveev N.I. Ruslo reki i eroziya v ee basseine [River bed and erosion in its basin]. Moscow, Geography faculty of MSU Publ., 2003, 355 p. (in Russian) 
  6. Malye reki volzhskogo basseina [Small rivers of the Volga basin]. Ed. by N.I. Alekseevsky. Moscow, Moscow State University Publ., 1998, 234 p. (in Russian) 
  7. Mikhailov V.N., Dobrovolskiy A.D., Dobrolyubov S.A. Gidrologiya [Hydrology]. Moscow, Vysshaya shkola Publ., 2005, 463 p. (in Russian) 
  8. Myslivets V.I., Sheshnev A.S. Viktor Pavlovich Filosofov i ego vremya (k 110-letiyu so dnya rozhdeniya) [Victor Pavlovich Filosofov and His Time (to the 110th Anniversary)]. Geomorfologiya [Geomorphology], 2020, no. 1, pp. 107-114. https://doi.org/10.31857/S0435428120010101 (in Russian) 
  9. Rzhanitsyn N.A. Morfologicheskie i gidrologicheskie zakonomernosti stroeniya rechnoi seti [Morphological and hydrological patterns of river network structure]. Leningrad, Gidrometeoizdat Publ., 1960, 238 p. (in Russian) 
  10. Simonov Yu.G. Morfometricheskii analiz rel'efa [Morphometric analysis of relief]. Moscow, Smolensk, Smolensk State University Publ., 1998, 272 p. (in Russian) 
  11. Simonov Yu.G., Simonova T.Yu. Rechnoi bassein i basseinovaya organizatsiya geograficheskoi obolochki [River basin and basin organization of the geographic envelope]. Eroziya pochv i ruslovye protsessy [Soil erosion and riverbed processes]. Moscow, 2004, no. 14, pp. 7-32. (in Russian) 
  12. Sochava V.B. Vvedenie v uchenie o geosistemakh [Introduction to the study of geosystems]. Novosibirsk, Nauka Publ., 1978, 320 p. (in Russian) 
  13. Spesivy O.V., Lisetskii F.N. Otsenka intensivnosti i normirovanie erozionnykh poter' v Tsentralno-Chernozemnom raione na osnove basseinovogo podkhoda [Estimate of the intensity and regulation of erosion soil losses in Central Chernozem region based on the basin approach]. Nauchnye vedomosti BelGU. Seriya: Estestvennye nauki [Belgorod State University Scientific Bulletin. Natural Sciences], 2014, no. 10 (181), pp. 125-132. (in Russian) 
  14. Maltsev K.A., Talipova S.N., Magzyanov I.I., Somov A.A., Maltseva T.S. Sravnenie sovremennykh svobodno rasprostranyaemykh tsifrovykh modelei rel'efa i ikh primenimosti dlya erozionnogo modelirovaniya [Accuracy Analysis of New Freely Available Digital Terrain Models in the European Territory of Russia]. Izvestiya Russkogo geograficheskogo obshchestva [Proceedings of the Russian Geographical Society], 2025, vol. 157, no. 1, pp. 79-98. https://doi.org/10.31857/S0869607125010067 (in Russian) 
  15. Erozionno-ruslovye sistemy [Catchment erosion-fluvial systems] / Ed. by R.S. Chalov, A.Yu. Sidorchuk, V.N. Golosov. Moscow, INFRA-M Publ., 2017, 702 p. (in Russian)
  16. Litvin L.F., Kiryukhina Z.P., Krasnov S.F., Dobrovolskaya N.G. Dynamics of agricultural soil erosion in European Russia. Eurasian Soil Science, 2017, vol. 50, no. 11, pp. 1344-1353. https://doi.org/10.1134/S1064229317110084 
  17. Falconer R., Lin B., Harpin R. Environmental modelling in river basin management. International Journal of River Basin Management, 2005, vol. 3, no. 3, pp. 169-184. https://doi.org/10.1080/15715124.2005.9635256 
  18. Florinsky I.V. An illustrated introduction to general geomorphometry. Progress in Physical Geography, 2017, vol. 41, no. 6, pp. 723-752. https://doi.org/10.1177/030913331773366 
  19. Hengl T., Reuter H.I. Geomorphometry: Concepts, Software, Applications. Elsevier. Developments in Soil Science, 2009, vol. 33, 765 p. 
  20. Horton R.E. Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 1945, vol. 56, no. 3, 275 p. https://doi.org/10.1130/0016-7606(1945)56[275:edosat]2.0.co;2 
  21. Humboldt A. von. Kosmos. Entwurf einer physischen Weltbeschreibung [Cosmos: A Sketch of a Physical Description of the Universe]. Stuttgart, G. Gottaschen Publ., 1845, vol. 6, 175 p. (in German) 
  22. Hutchinson M.F. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology, 1989, vol. 106, no. 3–4, pp. 211-232. https://doi.org/10.1016/0022-1694(89)90073-5 
  23. Maltsev K., Yermolaev O. Assessment of soil loss by water erosion in small river basins in Russia. Catena, 2020, vol. 195, P. 104726. https://doi.org/10.1016/j.catena.2020.104726 
  24. Melsse D.W., Tegegne M.A., Mekonnen Y.A., Bihon Y.T. Morphometric analysis for understanding river basin hydrology: a case of Gelda watershed, Tana Sub-Basin, Ethiopia. Applied Water Science, 2025, vol. 15, no. 171. https://doi.org/10.1007/s13201-025-02526-x 
  25. Kassouk Z., Thouret J.-C., Gupta A., Solikhin A., Liew S.C. Object-oriented classification of a high-spatial resolution SPOT5 image for mapping geology and landforms of active volcanoes: Semeru case study, Indonesia. Geomorphology, 2014, vol. 221, pp. 18-33. https://doi.org/10.1016/j.geomorph.2014.04.022 
  26. Scheidegger A.E. Theoretical geomorphology. Berlin, Springer, 1961. 333 p. 
  27. Shreve R.L. Statistical law of stream numbers. The Journal of Geology, 1966, vol. 74, no. 1, pp. 17-37. https://doi.org/10.1086/627137 
  28. Strahler A.N. Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 1952, vol. 63, no. 11, pp. 1117-1142. https://doi.org/10.1130/0016- 7606(1952)63[1117:HAAOET]2.0.CO;2
  29. Verhagen P., Dragut L. Object-based landform delineation and classification from DEMs for archaeological predictive mapping. Journal of Archaeological Science, 2012, vol. 39, no. 3, pp. 698- 703. https://doi.org/10.1016/j.jas.2011.11.001 
  30. Young W., Harshadeep N.R. Managing Water Resources in Large River Basins. Water, 2020, vol. 12, no. 12, P. 3486. https://doi.org/10.3390/w12123486

Full text (russian)