«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2025. Vol 53

Application of a Hierarchical Approach to Modeling the Water Level Regime of Small and Medium-Sized Lakes in North-West Russia

Author(s)

A. A. Batmazova1

1 Russian State Hydrometeorological University, Saint Petersburg, Russian Federation

Abstract
The article presents a set of hierarchical models that allow simulating, extending and restoring series of average daily and average monthly water levels of small and medium-sized lakes in the North-West region of Russia. The objects under study are lakes of the Baltic, White and Barents Sea basins. One of the key problems is the lack of initial hydrometeorological information in the region under consideration. This issue is resolved using the author's program and expert analysis, which allow selecting representative meteorological stations. The article searches for alternative predictors of potential prognostic regression models. This search is based on multivariate statistics methods and the water balance approach. As a result of combining both approaches, predictors were identified that allow replacing insufficiently accurate data on atmospheric precipitation with such characteristics as: relative air humidity, water vapor saturation deficit. The models obtained in the article allow simulating the level regime of lakes with an optimal lead time of 3 days for models constructed using daily discrete data, and 1 month for models constructed using monthly data. In order to adapt the obtained models to changing hydrometeorological conditions, the existence of a relationship between the parameters of cyclonic activity and the water levels of the studied lakes was investigated. The establishment of such a relationship made it possible to proceed to the determination of numerical values of meteorological characteristics that are an indicator of the passage of a cyclone. Atmospheric pressure and relative humidity became such indicative and accessible characteristics.
About the Authors
Batmazova Anna Aleksandrovna, Postgraduate, Assistant, Department of Engineering Hydrology. Russian State Hydrometeorological University 79, Voronezhskaya st., St. Petersburg, 192007, Russian Federation e-mail: batmazovaa@mail.ru
For citation
Batmazova A.A. Application of a Hierarchical Approach to Modeling the Water Level Regime of Small and Medium-Sized Lakes in North-West Russia. The Bulletin of Irkutsk State University. Series Earth Sciences, 2025, vol. 53, pp. 20-38. https://doi.org/10.26516/2073-3402.2025.53.20 (in Russian)
Keywords
lakes, water level regime, hydrometeorological study, physical-statistical water balance approach, cyclonic activity, atmospheric pressure.
UDC
556.555.2+551.515.1(470.2)
DOI
https://doi.org/10.26516/2073-3402.2025.53.20
References
  1. Batmazova A.A., Gajdukova E.V. Metod udlinenija rjadov nabljudenij za urovnjami vody v ozerah Karelii [Method of extending series of observations of water levels in lakes of Karelia]. Vestnik Udmurtskogo universiteta. Serija “Biologija. Nauki o Zemle” [Bulletin of Udmurt University. Series Biology, Earth Sciences], 2025, vol. 35, no. 1, pp. 70-80. https://doi.org/10.35634/2412-9518- 2025-35-1-70-80 (in Russian) 
  2. Batmazova A.A. Modelirovanie urovennogo rezhima ozera Arpi [Modeling the water level regime of Lake Arpi]. Proceedings of the Yerevan State University, Geology and Geography, 2025, vol. 59, no. 2 (266), pp. 175-180. https://doi.org/10.46991/PYSUC.2025.59.2.175 (in Russian) 
  3. Batmazova A.A., Gajdukova E.V. Postroenie regressionnyh modelej dlja ocenki urovennogo rezhima ozer Severo-Zapadnoj chasti Rossii [Construction of regression models for assessing the level regime of lakes in North-West Russia]. Gidrometeorologija i jekologija [Hydrometeorology and ecology], 2025, vol. 78, pp. 151-165. https://doi.org/10.33933/2713-3001-2025-78-151-165 (in Russian) 
  4. Bondarchuk S. S., Bondarchuk I. S. Statobrabotka jeksperimental'nyh dannyh v MS Excel [Statistical processing of experimental data in MS Excel]. Textbook. Tomsk, TGU Publ., 2018, 433 p. (in Russian) 
  5. Georgievskij Y.M., Shanochkin S.V. Gidrologicheskie prognozy. [Hydrological forecasts]. SPb, RGGMU, 2013, 436 p. (in Russian) 
  6. Danchev V.N. Razrabotka i primenenie informacionno-vychislitelnogo kompleksa dlja modelirovanija cirkuljacij i termicheskogo rezhima Teleckogo ozera [Development and application of an information and computing complex for modeling circulation and thermal regime of Lake Teletskoye]. Cand. sci. diss. abstr. Novosibirsk, 2013, 16 p. (in Russian) 
  7. Iofin Z.K. Teoreticheskoe obosnovanie linejno-korreljacionnoj modeli vodnogo balansa [Theoretical justification of the linear-correlation model of water balance]. Vestnik GUMRF [Bulletin of the State University of Maritime and Inland Resources], 2013. vol. 3, no. 19, pp. 18-27. (in Russian) 
  8. Kondrat'ev S.A., Shmakova M. V., Golosov S.D. et al. Modelirovanie v ozerovedenii. Opyt INOZ RAN. [Modeling in Lake Science. Experience of the Institute of Lake Science of the Russian Academy of Sciences]. Gidrometeorologija i jekologija [Hydrometeorology and ecology], 2021, vol. 65, pp. 607-647. https://doi.org/10.33933/2713-3001-2021-65-607-647. (in Russian) 
  9. Mezenceva L.I., Sokolov O.V., Druz N.I. Atmosfernaja cirkuljacija nad Dalnim Vostokom v 2013 g. pri jekstremalnom navodnenii v bassejne Amura [Atmospheric circulation over the Far East in 2013 during extreme flooding in the Amur basin]. Izvestija Tihookeanskogo nauchnogo instituta rybnogo hozjajstva [News of the Pacific Scientific Institute of Fisheries], 2015, vol. 180, pp. 261- 272. https://doi.org/10.26428/1606-9919-2015-180-261-272 (in Russian) 
  10. Nazarova L. E. Izmenenie globalnogo i regionalnogo klimata. [Global and regional climate change]. Vodnaja sreda: obuchenie dlja ustojchivogo razvitija [Aquatic environment: training for sustainable development]. Petrozavodsk, Karelian Research Center RAS, 2010, pp. 55-64. (in Russian) 
  11. Nezhihovskij R.A. Navodnenija na rekah i ozerah [Flooding of rivers and lakes]. Leningrad, Gidrometeoiz Publ., 1988, 183 p. (in Russian) 
  12. Tabelinova A.S. Kolebanija urovnja Kaspijskogo morja: prichiny, posledstvija i metody issledovanija. [Fluctuations in the Caspian Sea level: causes, consequences and research methods]. Evrazijskij Sojuz Uchenyh (ESU) [Eurasian Union of Scientists (ESU)], 2019, vol. 4, no. 61, pp. 34-40. https://doi.org/10.31618/ESU.2413-9335.2019.7.61.57 (in Russian) 
  13. Shver C. A. Atmosfernye osadki na territorii SSSR [Atmospheric precipitation in the territory of the USSR]. Leningrad, Gidrometeoiz Publ., 1984, 285 p. (in Russian) Hegerl G. C. et al. Challenges in quantifying changes in the global water cycle. Bulletin of the American Meteorological Society, 2015, vol. 96, pp. 1097-1115. https://doi.org/10.1175/BAMS-D-13-00212.1
  14. Xu H., Tian Z., Sun L. et al. Compound flood impact of water level and rainfall during tropical cyclone periods in a coastal city: the case of Shanghai. Natural Hazards and Earth System Sciences, 2022, vol. 22, pp. 2347-2358. https://doi.org/10.5194/nhess-22-2347-2022 
  15. Contreras-Rojas J., Mardones P., Sobarzo M. Impact of extratropical cyclones on coastal circulation in a semi-enclosed bay within the Humboldt Current System. Ocean Science, 2025, vol. 21, pp. 497–514. https://doi.org/10.5194/os-21-497-2025 
  16. Crapper P.F., Fleming P.M., Kalma J.D. Prediction of lake levels using water balance models. Environmental Software, 1996, vol. 11, no. 4, pp. 251-258. https://doi.org/10.1016/S0266-9838(96)00018-4 
  17. Gardener M. Statistics for Ecologists Using R and Excel: Data Collection, Exploration, Analysis and Presentation. Pelagic Publishing, 2017, 406 p. Xu N., Zheng H., Ma Y. et al. Global estimation and assessment of monthly lake/reservoir water level changes using ICESat-2 ATL13 products. Remote Sensing, 2021, vol. 13 (14), pp. 2744. https://doi.org/10.3390/rs13142744 
  18. Gunawardhana L.N., Al-Rawas G.A., Kazama S. An alternative method for predicting relative humidity for climate change studies. Meteorological Applications, 2017, vol. 24, pp. 551-559. https://doi.org/10.1002/met.1641 
  19. Woolway R.I., Kraemer B.M., Lenters J.D. et al. Global Lake responses to climate change. Nature Reviews Earth & Environment, 2020, vol. 1, pp. 388-403. https://doi.org/10.1038/s43017-020-0067-5
  20. Haghighi A.T., Kløve B. A sensitivity analysis of lake water level response to changes in climate and river regimes. Limnologica, 2015, vol. 51, pp. 118-130. https://doi.org/10.1016/j.limno.2015.02.001
  21. Vilibić I., Bubalo M., Zemunik S.P. et al. High-frequency water level oscillations in a coastal shallow lake. Natural Hazards, 2025. https://doi.org/10.1007/s11069-025-07506-7 
  22. Massmann A., Gentine P., Lin C. When Does Vapor Pressure Deficit Drive or Reduce Evapotranspiration. Journal of advances in modeling earth systems, 2019, vol. 11 (10), pp. 3305-3320. https://doi.org/10.1029/2019MS001790 
  23. Moriasi D.N., Arnold J.G., Van L.M.W. et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 2007, vol. 50, no. 3, pp. 885-900. https://doi.org/10.13031/2013.23153 
  24. Parfitt R., Czaja A., Seo H. A simple diagnostic for the detection of atmospheric fronts. Geophysical Research Letters, 2017, vol. 44, pp. 4351-4358. https://doi.org/10.1002/2017GL073662 
  25. Trenberth K.E., Dai A., Rasmussen R., Parsons D.B. The Changing Character of Precipitation. Bulletin of the American Meteorological Society, 2003, vol. 84, no. 9, pp. 1205-1218. https://doi.org/10.1175/BAMS-84-9-1205 
  26. Melsen L. A., Puy A., Torfs P. J. J. F., Saltelli A. The rise of the Nash-Sutcliffe efficiency in hydrology. Hydrological Sciences Journal, 2025, vol. 70, no. 8, pp. 1248-1259. https://doi.org/10.1080/02626667.2025.2475105 



Full text (russian)