«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2024. Vol 48

The Application of Vegetation and Water Indices to Assess the State of Post-pyrogenic Raised Bogs in Western Siberia

Author(s)
A. A. Sinyutkina
Abstract
The article presents an analysis of the using vegetation and water indices possibilities to assess the pyrogenic load and post-pyrogenic vegetation restoration in raised bogs. The object of the study is burned out in 2016 site within the drained part of the Great Vasyugan mire. The research based on the vegetation field description data carried out in 2023 and Landsat 8 satellite data. Vegetation (NDVI, VARI, NBR) and water (NDWI WRI) indices for field research plots were calculated, and a statistical analysis of their interrelationships with the degree of pyrogenic load and characteristics of vegetation cover was performed using the principal component method. The effect of the wildfire was manifested in the partial or complete burning of the surface, trees, dwarf shrubs and mosses. Seven years after the fire, there was an almost complete restoration of dwarf shrubs, the appearance of pine and birch undergrowth, intensive overgrowth of burnt surfaces by Polytrichum strictum, and the restoration of sphagnum mosses began. The study showed that the values of all the considered indices, with the exception of NDVI, are lower at post-pyrogenic points compared to unburned ones. Of all the indices considered, NDWI showed the maximum dependence on the proportion of surface burnout and projective coating with sphagnum mosses. Water indices turned out to be more suitable in comparison with vegetation indices for assessing pyrogenic load and trends of post-pyrogenic restoration in conditions of raised bog. The results obtained will be used to create training inputs for decoding satellite data and to conduct a spatial and temporal assessment of the restoration of post-pyrogenic sites.
About the Authors
Sinyutkina Anna Alekseevna, Candidate of Sciences (Geography), Senior Researcher, Siberian Research Institute of Agriculture and Peat – branch of the Siberian Federal Scientific Centre of Agro-Bio Technologies RAS, 3, Gagarin st., Tomsk, 634050, Russian Federation, e-mail: ankalaeva@yandex.ru
For citation

Sinyutkina A.A. The Application of Vegetation and Water Indices to Assess the State of Post-pyrogenic Raised Bogs in Western Siberia. The Bulletin of Irkutsk State University. Series Earth Sciences, 2024, vol. 48, pp. 90-109. https://doi.org/10.26516/2073-3402.2024.48.90 (in Russian)

Keywords
Landsat, Tomsk Region, Great Vasyugan Mire, wildfire, bog vegetation
UDC
551.312.2 (571.16)
DOI
https://doi.org/10.26516/2073-3402.2024.48.90
References

Glukhova T.V., Sirin A.A. Losses of soil carbon upon a fire on a drained forested raised bog. Eurasian soil science, 2018, vol. 51, no. 5, pp. 542-549. https://doi.org/10.7868/S0032180X18050076

Dyukarev E.A., Alekseeva M.N., Golovatskaya E.A. Issledovanie rastitelnogo pokrova bolotnykh ekosistem po sputnikovym dannym [Study of Wetland Ecosystem Vegetation Using Satellite Data]. Issledovanie Zemli ikh kosmosa [Exploring the Earth from Space], 2017, no. 2, pp. 38-51. https://doi.org/10.7868/S0205961417020014 (in Russian)

Zraenko S.M. Analiz algoritmov obnaruzheniya zabolochennykh lesnykh uchastkov po kosmicheskim snimkam [Analysis of the possibilities of detecting waterforged forest sections by Space images]. Nauchno-tekhnicheskii vestnik Povolzh'ya [Scientific and technical Volga region bulletin], 2019, no. 9, pp. 23-25. (in Russian)

Samofal E.V., Stytsenko F.V., Bartalev S.A. et al. Issledovanie postpozharnoi dinamiki lesnoi rastitel'nosti [Research of post-fire dynamics of forest vegetation]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Modern problems of remote sensing of the Earth from space. Proc. of the 18th Russian Open Conf.]. Moscow, IKI RAS Publ., 2020, P. 359. https://doi.org/10.21046/18DZZconf-2020a (in Russian)

Kopoteva T.A., Kuptsova V.A. Effect of fires on the functioning of phytocenoses of peat bogs in the Middle-Amur lowland. Russian journal of ecology, 2016, vol. 47, no. 1, p. 11-18. https://doi.org/10.7868/S0367059715060086 (in Russian)

Kornienko S.G. Izuchenie transformatsii tundrovogo napochvennogo pokrova na uchastkakh pirogennogo porazheniya po dannym sputnikov Landsat [Transformation of tundra land cover at the sites of pyrogenic disturbance: studies based on Landsat satellite data]. Kriosfera Zemli [Earth’s Cryosphere], 2017, vol.31, no. 1, pp. 93-104. https://doi.org/10.21782/KZ1560-7496-2017-1(93-104) (in Russian)

Krutskikh N.V., Mironov V.L., Ryazantsev P.A. Ispolzovanie GIS-tekhnologii dlya obespecheniya rabot po izucheniyu bolotnykh massivov [The use of GIS-technologies for mire studies]. Interkarto. Intergis [InterCarto.InterGIS], 2018, no. 1(24), pp. 405-418. https://doi.org/10.24057/2414- 9179-2018-1-24-405-418 (in Russian)

Kurbatova I.E., Vereshchaka T.V., Ivanova A.A. Kosmicheskii monitoring transformatsii bolotnykh landshaftov v usloviyakh antropogennykh vozdeistvii [Space monitoring bog landscape transformation under anthropogenic impact conditions]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current problems in remote sensing of the Earth from Space], 2021, vol. 18, no. 4, pp 216-227. https://doi.org/10.21046/2070-7401-2021-18-4-216-227 (in Russian)

Malashchuk A.A., Filippov D.A. Postpirogennaya dinamika rastitel'nogo pokrova verkhovogo bolota Barskoe (Vologodskaya oblast) [Post-pyrogenic dynamics of the vegetation cover of the Barskoe raised bog (Vologda Region, Russia)]. Transformatsiya ekosistem [Ecosystem Transformation], 2021, vol. 4, no. 1, pp. 104-121. https://doi.org/10.23859/estr-200512 (in Russian)

Murav'eva L.V. Izuchenie mnogoletnei dinamiki prirodno-antropogennykh kompleksov narushennykh bolot s pomoshch'yu snimkov Landsat [Study of the multi-year dynamics of naturalanthropogenic complexes of disturbed bogs by using Landsat pictures]. Vestnik Tverskogo gosudarstvennogo universiteta. Seriya “Geografiya i geoekologiya” [Herald of Tver state university. Series: geography and geoecology], 2020, noю 1(29), pp. 52-60. https://doi.org/10.26456/2226-7719-1-2020-52-60 (in Russian)

Murav'eva L.V. Prostranstvenno-vremennaya neodnorodnost teplovogo polya narushennogo uchastka bolota orshinskii mokh po dannym sputnika Landsat [Spatial-temporal heterogeneity of the thermal field of the disturbed part of Orshinsky moss according to the Landsat satellite]. Vestnik Tverskogo gosudarstvennogo universiteta. Seriya “Geografiya i geoekologiya” [Herald of Tver state university. Series: geography and geoecology], 2019, no, 4 (28), pp. 57-63. https://doi.org/10.26456/2226-7719-2019-4-57-63 (in Russian)

Murav'eva L.V. Rasprostranenie pozharov i ikh vliyanie na razvitie prirodno-antropogennykh kompleksov bolota Vasil'evskii mokh [The spread of fires and their influence on the development of natural-anthropogenic complexes of the swamp Vasilievsky mokh]. Vestnik Tverskogo gosudarstvennogo universiteta. Seriya “Geografiya i geoekologiya” [Herald of Tver state university. Series: geography and geoecology], 2023, no. 1(41), pp. 47-55. https://doi.org/10.26456/2226-7719-2023-1-47-55 (in Russian)

Bulygina O.N., Razuvaev V.N., Korshunova N.N. et al. “Opisanie massiva dannykh mesyachnykh summ osadkov na stantsiyakh rossii”. Svidetelstvo o gosudarstvennoy registratsii bazy dannykh № 2015620394 [Description of the data array of monthly precipitation amounts at Russian stations". Certificate of state registration of the database, no. 2015620394]. (in Russian)

Sizov O.S., Tsymbarovich P. R., Ezhova E. V. et al. Otsenka postpirogennoi dinamiki tundrovoi rastitelnosti na severe Zapadnoi Sibiri za poslednie 50 let (1968-2018) na osnove dannykh DZZ detalnogo i vysokogo razresheniya [Assessment of the post-pyrogenic dynamics of tundra vegetation in the northern part of Western Siberia over the past 50 years (1968-2018) based on detailed and high resolution remote sensing data], Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current problems in remote sensing of the Earth from Space], 2020, vol. 17, no. 4, pp. 137-153. https://doi.org/10.21046/2070-7401-2020-17-4-137-153 (in Russian)

Parshin A.O. Razrabotka metodiki opredeleniya zabolochennosti territorii pri pomoshchi dannykh DZZ [Development of a methodology for determining the wetness of the territory using remote sensing data]. Naukosfera, 2021, no. 6(2), pp. 109-112. https://doi.org/10.5281/zenodo.5016357 (in Russian)

Moskovchenko D.V., Aref'ev S.P., Moskovchenko M.D. et al. Prostranstvenno-vremennoi analiz prirodnykh pozharov v lesotundre Zapadnoi Sibiri [Spatio-temporal analysis of wildfires in the forest-tundra of Western Siberia], Sibirskii ekologicheskii zhurnal [Contemporary Problems of Ecology], 2020, no. 2, pp. 243-255. https://doi.org/10.15372/SEJ20200210 (in Russian)

Bartalev S.A., Stytsenko F.V., Egorov V.A. et al. Sputnikovaya otsenka gibeli lesov Rossii ot pozharov [Satellite-Based Asessment of Russian Forest Fire Mortality]. Lesovedenie [Russian Journal of Forest Science], 2015, no. 2, pp. 83-94. (in Russian)

Stytsenko F.V., Saigin I.A., Bartalev S.A. Metodika ezhegodnoi aktualizatsii dannykh o ploshchadyakh neoblesennykh garei na territorii Rossii [The methodology of annual updating of data on the areas of unforested hares in Russia]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Modern problems of remote sensing of the Earth from space. Proc. of the 18th Russian Open Conf.]. Moscow: IKI RAN, 2021, P. 381. https://doi.org/10.21046/19DZZconf-2021a (in Russian)

Tigeev A.A., Moskovchenko D.V., Fakhretdinov A.V. Sovremennaya dinamika prirodnoi i antropogennoi rastitel'nosti zony predtundrovykh lesov Zapadnoi Sibiri po dannym vegetatsionnogo indeksa [Current trends in natural and anthropogenic vegetation in Western Siberia’s sub-tundra forests based on vegetation indices data], Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current problems in remote sensing of the Earth from Space], 2021, vol. 18, no. 4, pp. 166-177. https://doi.org/10.21046/2070-7401-2021-18-4-166-177 (in Russian)

Tkachenko A.E., Korotkova E.M. Monitoring territorii zapovednika “Vasyuganskii” po dannym DZZ [Monitoring of the Vasyuganskiy Nature Reserve territory based on Remote Sensing Data], Interekspo Geo-Sibir [Interexpo GEO-Siberia], 2022, vol. 7, no. 1, pp. 151-156. (in Russian)

Sinyutkina A.A., Gashkova L.P., Maloletko A.A., Magur M.G., Kharanzhevskaya Yu.A. Transformatsiya poverkhnosti i rastitel'nogo pokrova osushennykh verkhovykh bolot yugo-vostoka Zapadnoi Sibiri [Transformation of the surface and vegetation cover of drained bogs in Tomsk region], Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya [Tomsk State University Journal of Biology], 2018, no. 43, pp. 196-223. https://doi.org/10.17223/19988591/43/10 (in Russian)

Ludwig C., Walli A., Schleicher C. et al. A highly automated algorithm for wetland detection using multi-temporal optical satellite data. Remote Sensing of Environment, 2019, no. 224, pp. 333- 351. https://doi.org/10.1016/j.rse.2019.01.017

Benscoter B.W., Vitt D.H. Spatial patterns and temporal trajectories of the bog ground layer along a post-fire chronosequence. Ecosystems, 2008, no. 11, pp. 1054-1064. https://doi.org/10.1007/s10021-008-9178-4

Davranche A., Lefebvre G., Poulin B. Wetland monitoring using classification trees and SPOT-5 seasonal time series. Remote Sensing of Environment, 2010, no. 114, pp. 552-562.

Di Vittorio C.A. Georgakakos A. P. Land cover classification and wetland inundation mapping using MODIS. Remote Sensing of Environment, 2018, no. 204, pp. 1-17. https://doi.org/10.1016/j.rse.2017.11.001

Ghosh S., Mishra D.R., Gitelson A.A. Long-term monitoring of biophysical characteristics of tidal wetlands in the northern Gulf of Mexico – A methodological approach using MODIS. Remote Sensing of Environment, 2016, no. 173, pp. 39-58. http://dx.doi.org/10.1016/j.rse.2015.11.015

Gunnarsson U. Global patterns of Sphagnum productivity. Journal of Bryology, 2005, no. 27, pp. 269-279. https://doi.org/10.1179/174328205X70029.

Laine A.M., Mehtatalo L., Tolvanen A. et al. Impacts of drainage, restoration and warming on boreal wetland greenhouse gas fluxes. Science of the Total Environment, 2019, no. 647, pp. 169-181. https://doi.org/10.1016/j.scitotenv.2018.07.390.

Minkkinen K., Laine J. Effect of forest drainage on the peat bulk density of pine mires in Finland. Canadian Journal of Forest Research, 1998, no. 28, pp. 178-186. https://doi.org/10.1139/cjfr28-2-178

Sirin A.A., Medvedeva M.A., Makarov D.A. et al. Multispectral satellite based monitoring of land cover change and associated fire reduction after large-scale peatland rewetting following the 2010 peat fires in Moscow Region (Russia). Ecological Engineering, 2020, no. 158, 106044. http://dx.doi.org/10.1016/j.ecoleng.2020.106044

Nelson K., Thompson D., Hopkinson C. et al. Peatland-fire interactions: A review of wildland fire feedbacks and interactions in Canadian boreal peatlands. Science of the Total Environment, 2021, no. 769, 145212. https://doi.org/10.1016/j.scitotenv.2021.145212

Petus C., Lewis M., White D. Monitoring temporal dynamics of Greate Artesian Basin wetland vegetation, Australua, using MODIS NDVI. Ecological Indicators, 2013, no. 34, pp. 41-52. http://dx.doi.org/10.1016/j.ecolind.2013.04.009

Bragazza L., Buttler A., Siegenthaler A. et al. Plant Litter Decomposition and Nutrient Release in Peatlands. Carbon Cycling in Northern Peatlands, 2009, no. 184, pp. 99-110. https://doi.org/10.1029/2008GM000815.

Bacon K.L., Baird A.J., Blundell A. et al. Questioning ten common assumptions about peatlands. Mire Peat, 2017, no. 19(12), pp. 1-23. https://doi.org/10.19189/MaP.2016.OMB.253.

Rebelo L.M., Finlayson C.M., Nagabhatla N. Remote sensing and GIS for wetland inventory, mapping and change analysis. Journal of Environmental Management, 2009, no. 90, pp. 2144-2153. http://dx.doi.org/10.1016/j.jenvman.2007.06.027

Rein G., Huang X. Smouldering wildfires in peatlands, forests and the arctic: Challenges and perspectives. Environmental Science and Health, 2021, no. 24, 100296. http://dx.doi.org/10.1016/j.coesh.2021.100296

Sinyutkina A. Drainage consequences and self-restoration of drained raised bogs in the southeastern part of Western Siberia: Peat accumulation and vegetation dynamics. Catena, 2021, no. 205, 105464. http://dx.doi.org/10.1016/j.catena.2021.105464

Amani M., Salehi B., Mahdavi S., Brisco B. Spectral analysis of wetland using multi-sourse optical satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, no. 144, pp. 119-136. https://doi.org/10.1016/j.isprsjprs.2018.07.005

Meingast K.M., Falkowski M.J., Kane E.S., Potvin L.R., Benscoter B.W., Smith A.M.S., Bourgeau-Chavez L.L., Miller M.E. Spectral detection of near-surface moisture content and watertable position in northern peatland ecosystems. Remote Sensing of Environment, 2014, no. 152, pp. 536-546. http://dx.doi.org/10.1016/j.rse.2014.07.014

Knox S.H. Dronova I., Sturtevant C., Oikawa P.Y., Matthes J.H., Verfaillie J., Baldocchi D. Using digital camera and Landsat imagery with eddy covariance data to model gross primary production in restored wetlands. Agricultural and Forest Meteorology, 2017, no. 237-238, pp. 233-245. http://dx.doi.org/10.1016/j.agrformet.2017.02.020


Full text (russian)