«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2024. Vol 47

Influence of Weather Factors on the Mean Daily Intensity of the Urban Heat Island In Yekaterinburg

Author(s)
N. R. Fakaeva, D. Yu. Demezhko, A. A. Gornostaeva, B. D. Khatskevich
Abstract
Urban heat island (UHI) intensity in the surface air temperature field is equal to the difference between temperatures (averaged for the period under consideration) in the city and in the immediate rural surroundings. Using multi-regression analysis, We investigated the meteorological factors determining the mean daily UHI intensity based on observational data at weather stations in Yekaterinburg and the village of Verkhneye Dubrovo in 2020–2022. The average value of an UHI intensity in May-September equals to 0.94 °C with a standard deviation of daily mean values of 0.71 °C. The multiple linear regression model includes the difference in the relative humidity of the atmosphere in the city and the village, the weather factor determined by wind speed and cloudiness, and atmospheric pressure. This “summer” model describes 60 % of the observed UHI variance. In December-March, the average UHI intensity equals to 0.81 °C with a standard deviation of mean daily values of 0.82 °C. The regression model includes only the weather factor explaining 27 % of the UHI variability. It is concluded that the UHI intensity in Yekaterinburg is primarily determined by solar radiation and various properties of urban and rural surfaces (albedo, emissivity, thermal properties of soils). They determine the maximal UHI intensity that is realized only in “ideal” weather (weather factor ~1). Deviations from “ideal” conditions described by meteorological factors only reduce the maximal UHI intensity. In winter, heat leaks from buildings and heating networks weakly dependent on the meteorological factors make an additional contribution to the UHI intensity.
About the Authors

Fakaeva Nelly Rafaelevna, Junior Research Scientist, Institute of Geophysics UB RAS, 100, Amundsen st., 620016, Yekaterinburg Russian Federation, e-mail: fakaeva.n@gmail.com

Demezhko Dmitry Yurievich, Doctor of Scienses (Geology and Mineralogy), Principal Research Scientist, Institute of Geophysics UB RAS, 100, Amundsen st., 620016, Yekaterinburg, Russian Federation, e-mail: ddem54@inbox.ru

Gornostaeva Anastasiya Aleksandrovna, Candidate of Scienses (Physics and Mathematics), Senior Research Scientist, Institute of Geophysics UB RAS, 100, Amundsen st., 620016, Yekaterinburg, Russian Federation, e-mail: free_ride_@mail.ru

Khatskevich Bogdan Dmitrievich, Research Scientist, Institute of Geophysics UB RAS, 100, Amundsen st., 620016, Yekaterinburg, Russian Federation, e-mail: disaybl@yandex.ru

For citation
Fakaeva N.R., Demezhko D.Yu., Gornostaeva A.A., Khatskevich B.D. Influence of Weather Factors on the Mean Daily Intensity of the Urban Heat Island In Yekaterinburg. The Bulletin of Irkutsk State University. Series Earth Sciences, 2024, vol. 47, pp. 77-89. https://doi.org/10.26516/2073-3402.2024.47.77 (in Russian)
Keywords
urban climate, surface air temperature, urban heat island, weather factors.
UDC
551.588.7(470.54)
DOI
https://doi.org/10.26516/2073-3402.2024.47.77
References

Gornostaeva A.A., Demezhko D.Yu., Khatskevich B.D. Vremennaya izmenchivost gorodskogo ostrova tepla Ekaterinburga [Temporal Variability of an Urban Heat Island in Yekaterinburg]. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Nauki o Zemle [The Bulletin of Irkutsk State University. Series: Earth Sciences], 2023, vol. 43, pp. 3-18. (in Russian)

Dudorova N.V., Belan B.D. Otsenka faktorov, opredelyayushchikh formirovanie gorodskogo ostrova tepla v g. Tomsk [Assessment of factors determining the formation of an urban heat island inTomsk]. Optika atmosfery i okeana [Atmospheric and ocean optics], 2016, vol. 29, no. 5, pp. 426-436. (in Russian)

Klimat Sverdlovska [Climate of Sverdlovsk]. Ed. by V.V. Morokov, C.A. Shver. Leningrad, Gidrometeoizdat Publ., 1981, pp. 190. (in Russian)

Korableva E.G., Lenskaya O.Yu. Issledovaniya ostrova tepla goroda Chelyabinska v zimnii period [Studies of the heat island of the city of Chelyabinsk in the winter period]. Vestnik Chelyabinskogo gosudarstvennogo universiteta. Seriy: Ekologiya i Prirodopolzovanie [The Bulletin of Chelyabinsk State University. Ecology. Nature management], 2010, vol. 4, no. 8, pp. 15-23. (in Russian)

Demezhko D.Yu., Gornostaeva A.A., Khatskevich B.D. et al. Novaya model formirovaniya sutochnogo tsikla intensivnosti gorodskogo ostrova tepla [A new model for the formation of the diurnal cycle of the urban heat island intensy]. Monitoring, nauka i tekhnologii [Monitoring. Science & Technologies], 2022, vol. 4, no. 4, pp. 26-31. (in Russian)

Theeuwes N. E., Steeneveld G.-J., Ronda R. J., Holtslag A. A. M. A diagnostic equation for the daily maximum urban heat island effect for cities in northwestern Europe. International journal of climatology, 2017, vol. 37, no. 1, pp. 443-454.

Burger M., Gubler M., Bronnimann S. Modeling the intra-urban nocturnal summertime air temperature fields at a daily basis in a city with complex topography. Plos climate, 2022, vol. 1, no. 12.

Earl N., Simmonds I., Tapper N. Weekly cycles in peak time temperatures and urban heat island intensity. Environmental Research Letters, 2016, vol. 11, 074003.

Fortuniak K. An application of the urban energy balance scheme for a statistical modeling of the UHI intensity. Proceedings of the 5th International Conference on Urban Climate. University of Lodz, 2003, vol. 1, pp. 59-62.

Gál T.M., Skarbit N., Unger J. Urban heat island patterns and their dynamics based on an urban climate measurement network. Hungarian Geographical Bulletin (2009-), 2016, vol. 65, no. 2, pp. 105–116.

He B.J. Potentials of meteorological characteristics and synoptic conditions to mitigate urban heat island effects. Urban climate, 2018, no. 24, pp. 26-33.

Hinkel K.M., Nelson F. E. Anthropogenic heat island at Barrow, Alaska, during winter: 2001-2005. Journal of Geophysical Research, 2007, vol. 112, D06118, https://doi.org/10.1029/2006JD007837

Holmer B., Eliasson I. Urban-rural vapour pressure differences and their role in the development of urban heat islands. International Journal of Climatology: A Journal of the Royal Meteorological Society, 1999, vol. 19, no. 9, pp. 989-1009.

Howard L. The climate of London. (Phillips W., sold also by J.A. Arch), 1818, vol. 1, pp. 221.

Kim Y.H., Baik J. J. Maximum urban heat island intensity in Seoul. Journal of Applied Meteorology, 2002, vol. 41, no. 6, pp. 651-659.

Kobayashi M. Influence of urbanized atmosphere on longwave radiation field at night. Geographical Review of Japan, 1982, vol. 55, no. 6, pp. 421-444.

Lee D.O. Urban-rural humidity differences in London. International journal of climatology, 1991, vol. 11, no.5, pp. 577-582.

Lindgren J. Nocturnal Incoming Radiation in and Around Göteborg, Sweden. Diss. Univ. 1997, B93, p. 47.

Lindqvist S. Bebyggelse klimatologiska studier. Meddelande fran Lunds Universitets Geografiska institution, Avhandlingar LXI. 1970.

Luo Z., Asproudi C. Subsurface urban heat island and its effects on horizontal ground-source heat pump potential under climate change. Applied Thermal Engineering, 2015, vol. 90, pp. 530-537.

Magee N., Curtis J., Wendler G. The urban heat island effect at Fairbanks, Alaska. Theoretical and applied climatology, 1999, vol. 64, no. 1, pp. 39-47.

Oke T.R. City size and the urban heat island. Atmospheric Environment, 1973, vol. 7, no. 8, pp. 769-779.

Oke T.R. The energetic basis of the urban heat island. Quarterly journal of the royal meteorological society, 1982, vol. 108, pp. 455.

Oke T.R. Towards better scientific communication in urban climate. Theoretical and Applied Climatology, 2006, vol. 84, pp. 179-190.

Runnalls K.E., Oke T.R. Dynamics and controls of the near-surface heat island of Vancouver, British Columbia. Physical Geography, 2000, vol. 21, no. 4, pp. 283-304.

Runnalls K.E., Oke T.R. A Technique to Detect Microclimatic Inhomogeneities in Historical Records of Screen-Level Air Temperature. Journal of Climate, 2006, vol. 19, no. 6, pp. 959-978.

Roy S.S., Singh R.B. Role of local level relative humidity on the development of urban heat island across the Delhi Metropolitan Region. Urban development challenges, risks and resilience in Asian mega cities, 2015, pp. 99-118.

Yadav N., Sharma C., Peshin S.K., Masiwal R. Study of intra-city urban heat island intensity and its influence on atmospheric chemistry and energy consumption in Delhi. Sustainable cities and society, 2017, vol. 32, pp. 202-211.

Sundborg A. Climatological studies in Uppsala. Geographica, 1951, vol. 22, pp. 1-107.

Liu W. et al. Temporal characteristics of the Beijing urban heat island. Theoretical and Applied Climatology, 2007, vol. 87, no. 1, pp. 213-221.

Tzavali A., Paravantis J.P., Mihalakakou G. [et al.]. Urban heat island intensity: A literature review. Fresenius Environmental Bulletin, 2015, vol. 24, no. 12b, pp. 4537-4554.

Varquez A.C.G., Kanda M. Global urban climatology: a meta-analysis of air temperature trends (1960-2009). Climate and Atmospheric Science, 2018, vol. 1, no. 1, pp. 1-8.

Wolters D., Brandsma T. Estimating the urban heat island in residential areas in the Netherlands using observations by weather amateurs. Journal of Applied Meteorology and Climatology, 2012, vol. 51, no. 4, pp. 711-721.


Full text (russian)