«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2023. Vol 43

Identification of Unique Lakes Using Geographic Information Systems on the Example of the Nenets Autonomous Okrug

Author(s)
A. V. Izmailova, N. Yu. Korneenkova, A. M. Rasulova
Abstract
The possibilities of using geographic information systems (GIS) and cluster methods for identifying anomalies to identify unique lakes in the Nenets Autonomous Okrug (NAO) are demonstrated. The following tasks have been solved: 1) determination of the morphometric characteristics of lakes using methods of remote sensing of the Earth; 2) identification of anomalous morphometric characteristics by mathematical methods; 3) expert evaluation of the lakes resulting from the analysis to confirm their unique characteristics for the purpose of subsequent research and assigning them a special status. The relevance of the work is caused by the vastness and inaccessibility of the northern regions, which leads to the need for preliminary identification of objects that are most interesting for expeditionary research. In protected areas, objects that differ in their anomalous characteristics may be of particular interest. The test region of the study was limited by the boundaries of specially protected natural areas of the NAO. The deciphering of the lakes was carried out using the Global Forest Change data set. Raster processing and extraction of areal characteristics of water bodies were carried out in the QGIS software environment. The entire data set was divided into several groups according to the genetic category of the surface, which were also analyzed when identifying anomalies. This approach makes it possible to identify anomalous objects within a particular landscape. For data processing, the IBM SPSS Modeler software application was used, where the anomaly search is based on a two-stage clustering model. The search for anomalies by cluster methods is based on the fact that if the values of an instance are removed from the center of the cluster by more than a certain amount, then the object is considered an anomaly. As a result of applying the TwoStep Cluster algorithm to the sample of morphometric parameters of lakes, 42 anomalous objects were identified. The expert assessment confirmed that the identified lakes are of interest for further research. The final set included such well-known lakes as Golodnaya Guba, Peschanka-To, Kuznetskoe-To, as well as a number of small water bodies that stand out sharply for their peculiar characteristics in comparison with most of the lakes in the study region. For sparsely populated and logistically complex northern territories, the use of such an approach is an important element of field work planning.
About the Authors

Izmailova Anna Vladilenovna, Doctor of Sciences (Geography), Leading Research Scientist, Head, Laboratory of Lakes and Reservoirs, State Hydrological Institute, 23, 2nd line of Vasilyevsky Island, St. Petersburg, 199004, Russian Federation, e-mail: ianna64@mail.ru

Korneenkova Natalya Yurievna, Junior Research Scientist, Institute of Limnology RAS – a Separate Structural Subdivision of St. Petersburg Federal Research Center RAS, 9, Sevastyanov st., St. Petersburg, 196101, Russian Federation, e-mail: natta-@bk.ru

Rasulova Anna Muradovna, Candidate of Science (Physical and Mathematical), Research Scientist, Institute of Limnology RAS – a Separate Structural Subdivision of St. Petersburg Federal Research Center RAS, 9, Sevastyanov st., St. Petersburg, 196101, Russian Federation, e-mail: arasulova@gmail.com

For citation
Izmailova A. V., Korneenkova N. Yu., Rasulova A. M. Identification of Unique Lakes Using Geographic Information Systems on the Example of the Nenets Autonomous Okrug. The Bulletin of Irkutsk State University. Series Earth Sciences, 2023, vol. 43, pp. 30-45. https://doi.org/10.26516/2073-3402.2023.43.30 (in Russian)
Keywords
unique lakes, anomaly identification, outliers, cartography, machine learning methods, clustering.
UDC
[556.555:574.5]:51-7
DOI
https://doi.org/10.26516/2073-3402.2023.43.30
References

Gusev Ye.A., Kostin D.A. Karta pliotsen-chetvertichnykh obrazovaniy [Map of the PlioceneQuaternary formations]. Tsifrovaya model lista Gosudarstvennoy geologicheskoy karty Rossiyskoy Federatsii masshtaba 1:1 000 000. Tret'ye pokoleniye. Seriya Severo-Karsko-Barentsevomorskaya. List R-39,40 – o. Kolguyev – prol. Karskiye Vorota [Digital model of a sheet of the State Geological Map of the Russian Federation, scale 1:1,000,000. Third generation. North Kara-Barents Sea Series. Sheet R-39,40 – Kolguev Island - Karskiye Vorota Strait]. St. Petersburg, VSEGEI Press., 2014, 2 l. (in Russian)

Dauval'ter V.A., Khloptseva Ye.V. Gidrologicheskiye i gidrokhimicheskiye osobennosti ozer Bol'shezemel'skoy tundry [Hydrological and hydrochemical features of the lakes of the Bolshezemelskaya tundra]. Vestnik MGTU [Bulletin of MSTU], 2008, vol. 11(3), pp. 407-414. (in Russian)

Zinchenko A.G. Geomorfologicheskaya skhema, 1:2 500 000 [Geomorphological scheme, 1:2,500,000]. Tsifrovaya model' lista Gosudarstvennoy geologicheskoy karty Rossiyskoy Federatsii masshtaba 1:1 000 000. Tret'ye pokoleniye. Seriya Severo-Karsko-Barentsevomorskaya. List R-39,40 – o. Kolguyev – prol. Karskiye Vorota [Digital model of a sheet of the State Geological Map of the Russian Federation, scale 1:1,000,000. Third generation. North Kara-Barents Sea Series. Sheet R-39,40 - Kolguev Island - Karskiye Vorota Strait]. St. Petersburg, VSEGEI Press., 2014b, 2 l. (in Russian)

Zinchenko A.G. Geomorfologiya [Geomorphology]. Gosudarstvennaya geologicheskaya karta Rossiyskoy Federatsii. Masshtab 1:1 000 00. Tret'ye pokoleniye Seriya Severo-Karsko-Barentsevomorskaya. List R-39,40 – o. Kolguyev – prol. Karskiye Vorota . Ob"yasnitel'naya zapiska [State geological map of the Russian Federation. Scale 1:1,000,000. Third generation. North KaraBarents Sea Series. Sheet R-39,40 - Kolguev Island - Karskiye Vorota Strait. Explanatory letter]. St. Petersburg, VSEGEI Press., 2014a, 405 p. (in Russian)

Izmaylova A.V., Korneyenkova N.Yu. Ozora, obladayushchiye okhrannym statusom [Lakes with protected status]. Zapovedniki i natsional'nyye parki – nauchno-issledovatel'skiye laboratorii pod otkrytym nebom: materialy Vserossiyskoy nauchno-prakticheskoy konferentsii s mezhdunarodnym uchastiyem, Petrozavodsk, 12-14 oktyabrya, 2021 [Nature Reserves and National Parks – Open Air Research Laboratories: Proceedings of the All-Russian Scientific and Practical Conference with International Participation. Petrozavodsk, October 12-14, 2021]. Petrozavodsk, KarRC RAS Publ., 2021, pp. 176. (in Russian)

Informatsionno-analiticheskaya sistema “Osobo okhranyayemyye prirodnyye territorii Rossii” [Information and Analytical System “Specially Protected Natural Territories of Russia”]. FGBU AANII, Laboratoriya geoinformatsionnykh tekhnologiy [Federal State Budgetary Institution AANII, Laboratory of Geoinformation Technologies]. Available at: http://oopt.aari.ru/ (date of access: 11.10.2020). (in Russian)

Lavrov A.S., Potapenko L.M. Neopleystotsen Pechorskoy nizmennosti i Zapadnogo Pritiman'ya (stratigrafiya, paleogeografiya, khronologiya) [Neopleistocene of the Pechora Lowland and Western Timan Region (stratigraphy, paleogeography, chronology)]. Moscow, 2012, 191 p. (in Russian)

Pozdnyakov Sh.R., Izmailova A.V., Rasulova A.M. Unikal'nyye ozora kak ob"yekt nauchnogo interesa [Unique lakes as an object of scientific interest]. Izvestiya RGO [Regional Research of Russia], 2020, vol. 152(3), pp. 17-31. (in Russian)

Rasulova A.M., Izmaylova A.V. Primeneniye algoritma Isolation Forest dlya obosnovaniya unikal'nosti vodoyemov v gruppe karstovykh ozer [Application of the Isolation Forest Algorithm to Substantiate the Uniqueness of Water Bodies in the Group of Karst Lakes]. Byulleten' nauki i praktiki [Bulletin of Science and Practice], 2021, vol. 7(11), pp. 63-79. https://doi.org/10.33619/2414-2948/72 (in Russian)

Stepunin A.V. Geomorfologicheskaya skhema, 1:2 500 000 [Geomorphological scheme, 1:2,500,000]. Komplekt tsifrovykh materialov po listu Gosudarstvennoy geologicheskoy karty RF masshtaba 1:1 000 000 (tret'yego pokoleniya). Seriya Mezenskaya. List Q-39 – Nar'yan-Mar [A set of digital materials according to the sheet of the State Geological Map of the Russian Federation at a scale of 1:1,000,000 (third generation). Mezenskaya series. Sheet Q-39 (Naryan-Mar). Explanatory letter]. St. Petersburg, VSEGEI Press., 2015b, 2 l. (in Russian)

Stepunin A.V., Semenova L.R. Geomorfologiya [Geomorphology]. Gosudarstvennaya geologicheskaya karta Rossiyskoy Federatsii. Masshtab 1:1 000 000 (tret'ye pokoleniye). Seriya Mezenskaya. List Q-39 – Nar'yan-Mar. Ob"yasnitel'naya zapiska. [State geological map of the Russian Federation. Scale 1:1,000,000 (third generation). Mezenskaya series. Sheet Q-39 (Naryan-Mar)]. St. Petersburg, VSEGEI Press., 2015a, 393 p. (in Russian)

Chiu T., Fang D., Chen J., Wang Y., Jeris C. A Robust and Scalable Clustering Algorithm for Mixed Type Attributes in Large Database Environment. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001, pр. 263-268.

Babu T.R., Murty M.N., Subrahmanya S.V. Data Mining Paradigms. Compression Schemes for Mining Large Datasets. Advances in Computer Vision and Pattern Recognition. London, Springer, 2013, pp. 11-46.

Bacher J., Wenzig K., Vogler M. SPSS TwoStep Cluster – a first evaluation. Arbeits-und Diskussionspapiere. Universität Erlangen-Nürnberg, Sozialwissenschaftliches Institut, Lehrstuhl für Soziologie, 2004, 32 p.

Everitt B.S., Landau S., Leese M. Cluster Analysis. 5th ed. Chichester, Wiley, 2011. 352 p.

Google Earth Engine. Available at: https://developers.google.com/earth-engine/datasets/catalog (date of access: 20.09.2022).

Han J., Pei J., Kamber M. Data Mining: Concepts and Techniques. 3rd edition. Morgan Kaufmann Publ., 2011, 744 p.

Hansen M. C. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 2013, vol. 342 (6160), pp. 850-853.

Punj G., David W.S. Cluster Analysis in Marketing Research: Review and Suggestions for Application. Journal of Marketing Research, 1983, vol. 20, no. 2, pp. 134-48. https://doi.org/10.2307/3151680

Ramadhani F., Zarlis M., Suwilo S. Improve BIRCH algorithm for big data clustering. IOP Conf. Ser.: Materials Science and Engineering, 2020, vol. 725 (012090), 11 p.

Shih M.-Yi, Jheng J.-W., Lai L.-F. A Two-Step Method for Clustering Mixed Categroical and Numeric Data. Journal of Applied Science and Engineering, 2010, vol. 13 (1), pp. 11-19. https://doi.org/10.6180/jase.2010.13.1.02

SPSS Modeler Algorithms Guide. IBM Corporation 1994, 2020, 804 p. Zhang T., Ramakrishnan R., Livny M. BIRCH: A New Data Clustering Algorithm and Its Applications. Data Mining and Knowledge Discovery, 2004, vol. 1, pp. 141-182.


Full text (russian)