«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2023. Vol 43

Temporal Variability of an Urban Heat Island in Yekaterinburg

Author(s)
A. A. Gornostaeva, D. Yu. Demezhko, B. D. Khatskevich
Abstract
The article deals with the analysis of temporal variability of the urban heat island (UHI) in the field of surface air temperatures in Yekaterinburg using the data on meteorological observations on weather stations “Yekaterinburg” and “Verkhnee Dubrovo”. The UHI intensity variations have been analyzed for the periods from annual/interannual to diurnal. The sustainable effect of the urban heat island is manifested in all seasons. Annual cycles of monthly averaged UHI values demonstrates “W”-shaped form with maxima of about 1.0 ºС in February/March and in three summer months. Summer maximum is generally determined by maximal diurnal (night) UHI values. The maximum in February/March is related to the increased minimum daily values. From the 50s of the 20th century “W”-shaped annual curve of the UHI intensity remained unchanged under the increase in mean annual UHI values while growing at a rate of 1.31 ºС/100 years to the beginning of the 80s. At the same time, summer maximum increased at a faster rate in comparison with the winter one. Since the beginning of the 80s, the mean annual UHI intensity has stabilized at the level of 0.8 ºС. In a diurnal cycle, the maximal UHI intensity (to 2.4 ºС) is observed in May-July after the sunset. Maximal daily UHI intensity values in summer months are associated with a slower cooling of the city in high-rise building area. The local afternoon maximum (up to 0.8 ºС) caused by the insolation maximum under low albedo value of the urban coverage occurs also from May to July. In the autumn-winter period and at the beginning of spring, the daily amplitude of the UHI intensity decreases due to a decrease in the maximum of UHI and a slight increase in the minimum one. The increase in the minimum UHI values is facilitated by cloudiness, snow cover, calm wind conditions, an increase in the concentration of aerosol and water vapor near the surface and anthropogenic heat emissions. The study results can be used in fundamental and applied climatology, in the development of urban policy.
About the Authors

Gornostaeva Anastasiya Aleksandrovna, Candidate of Sciences (Physics and Mathematics), Senior Research Scientist, Institute of Geophysics UB RAS, 100, Amundsen st., Yekaterinburg, 620016, Russian Federation, е-mail: free_ride_@mail.ru

Demezhko Dmitry Yurievich, Doctor of Sciences (Geology and Mineralogy), Principal Research Scientist, Institute of Geophysics UB RAS, 100, Amundsen st., Yekaterinburg, 620016, Russian Federation, е-mail: ddem54@inbox.ru

Khatskevich Bogdan Dmitrievich, Research Scientist, Institute of Geophysics UB RAS, 100, Amundsen st., Yekaterinburg, 620016, Russian Federation, е-mail: disaybl@yandex.ru

For citation
Gornostaeva A. A., Demezhko D. Yu., Khatskevich B. D. Temporal Variability of an Urban Heat Island in Yekaterinburg. The Bulletin of Irkutsk State University. Series Earth Sciences, 2023, vol. 43, pp. 3-18. https://doi.org/10.26516/2073- 3402.2023.43.3 (in Russian)
Keywords
urban heat island, microclimate, urban climate.
UDC
551.584+551.588.7
DOI
https://doi.org/10.26516/2073-3402.2023.43.3
References

Balaev S.Yu. Stroitel'nyi rynok Ekaterinburga i Sverdlovskoi oblasti [Construction market of Yekaterinburg and Sverdlovsk region]. Available at: https://www.marketing.spb.ru/mr/realestate/eburg.htm (date of access: 23.09.2009). (in Russian)

Gornostaeva A.A., Demezhko D.Yu., Antipin A.N. Temperaturnyi otklik na vneshnee radiatsionnoe vozdeistvie: Verifikatsiya prostoi modeli [Temperature response to external radiative forcing: Verification of a simple model]. Geofizicheskie protsessy i biosfera [Geophysical Processes and Biosphere], 2021, vol. 20, no. 4, pp. 5-19. https://doi.org/10.21455/GPB2021.4-1 (in Russian)

Demezhko D.Yu., Gornostaeva A.A., Antipin A.N. Otsenka fazovykh sootnoshenii mezhdu teplovymi potokami i temperaturoi zemnoi poverkhnosti v sutochnom tsikle po rezul'tatam monitoringa na OGMS “Verkhnee Dubrovo” [Estimation of the phase relationships between heat fluxes and the ground surface temperature in a daily cycle based on the results of monitoring at the “Verkhnee Dubrovo” meteorological station]. Litosfera [Lithosphere], 2022, vol. 22, no. 2, pp. 239-250. https://doi.org/10.24930/1681-9004-2022-22-2-239-250 (in Russian)

Dudorova N.V., Belan B.D. Otsenka faktorov, opredelyayushchikh formirovanie gorodskogo ostrova tepla v g. Tomsk [Assessment of factors determining the formation of an urban heat island in Tomsk]. Optika atmosfery i okeana [Atmospheric and ocean optics], 2016, vol. 29, no. 5, pp. 426-436. (in Russian)

Kislov A.V., Varentsov M.I., Gorlach I.A., Alekseeva L.I. “Ostrov tepla” moskovskoi aglomeratsii i urbanisticheskoe usilenie global'nogo potepleniya [“Heat Island” of the Moscow agglomeration and urban increase in global warming]. Vestnik Moskovskogo universiteta. Seriya 5. Geografiya [Bulletin of Moscow University. Series 5. Geography], 2017, no. 4, pp. 12-19. (in Russian)

Adebayo Y. Day-Time Effects of Urbanization on Relative Humidity and Vapour Pressure in a Tropical City. Theoretical and Applied Climatology, 1991, vol. 43, pp. 17-30. https://doi.org/10.1007/BF00865039

Camilloni I., Barrucand M. Temporal variability of the Buenos Aires, Argentina, urban heat island. Theoretical and Applied Climatology, 2012, vol. 107, no. 1, pp. 47-58.

Chandler T. J. Selected bibliography on urban climate. Tech. Note N 155. Geneva, World Met. Organiz., 1970, WMO N 276, 383 p.

Hendricks Franssen H.J., Kuster T., Barmet P., Lohmann U. Comment on ‘winter ‘weekend effect’ in Southern Europe and its connection with periodicities in atmospheric dynamics’ by a Sanchez‐Lorenzo et al. Geophysical Research Letters, 2009, vol. 36 (L13706).

Theeuwes N.E., Steeneveld G.J., Ronda R.J., Rotach M.W., Holtslag A.A. Cool city mornings by urban heat. Environmental Research Letters, 2015, vol. 10 (114022).

DeLisi M.P., Cope A.M., Franklin J.K. Weekly precipitation cycles along the northeast corridor? Weather Forecast, 2001, vol. 16, pp. 343-53.

Earl N., Simmonds I., Tapper N. Weekly cycles in peak time temperatures and urban heat island intensity. Environmental Research Letters, 2016, vol. 11 (074003).

Zak M., Nita I.A., Dumitrescu A., Cheval S. Influence of synoptic scale atmospheric circulation on the development of urban heat island in Prague and Bucharest. Urban Climate, 2020, vol. 34, pp. 100681.

Geletič J., Lehnert M., Savić S., Milošević D. Inter-/intra-zonal seasonal variability of the surface urban heat island based on local climate zones in three central European cities. Building and Environment, 2019, vol. 156, pp. 21-32.

Jongtanom Y., Kositanont C., Baulert S. Temporal variations of urban heat island intensity in three major cities, Thailand. Modern Applied Science, 2011, vol. 5, no. 5, pp. 105.

Kim Y.H., Baik J.J. Maximum urban heat island intensity in Seoul. Journal of Applied Meteorology, 2002, vol. 41(6), pp. 651-659.

Osborn T.J., Jones P.D., Lister D.H. [et al.]. Land surface air temperature variations across the globe updated to 2019: the CRUTEM5 dataset // Journal of Geophysical Research: Atmospheres, 2021, vol. 126. https://doi.org/10.1029/2019JD032352

Lokoshchenko M.A. Urban heat island and urban dry island in Moscow and their centennial changes. Journal of Applied Meteorology and Climatology, 2017, vol. 56, no. 10, pp. 2729-2745.

Lokoshchenko M.А., Enukova E.A. Urban Heat Island in Moscow Derived from Satellite Data. Russian Meteorology and Hydrology, 2020, vol. 45(7), pp. 488-497.

Luo Z., Asproudi C. Subsurface urban heat island and its effects on horizontal ground-source heat pump potential under climate change. Applied Thermal Engineering, 2015, vol. 90, pp. 530-537

Magee N., Curtis J., Wendler G. The urban heat island effect at Fairbanks, Alaska. Theoretical and applied climatology, 1999, vol. 64, no. 1, pp. 39-47.

Jiang S., Huang F., Zhan W., Bechtel B., Liu Z., Demuzere M., Huang Y., Xu Y., Quan J., Xia W., Ma L. Mapping Local Climate Zones: A Bibliometric Meta-Analysis and Systematic Review. OSF Prepr, 2021, pp. 1-106. https://doi.org/10.31219/osf.io/c2bez

Oke T.R. Review of urban climatology, 1973-1976. Tech. Note N 169. Geneva, World Met. Organiz., 1979, WMO N 539, 100 p.

Oke T.R. The energetic basis of the urban heat island. Q.J.R. Meteorol. Soc., 1982, vol. 108, 455 pp.

Pichierri M., Bonafoni S., Biondi R. Satellite air temperature estimation for monitoring the canopy layer heat island of Milan. Remote Sensing of Environment, 2012, vol. 127, pp. 130-138.

Varentsov M., Fenner D., Meier F., Samsonov T., Demuzere M. Quantifying Local and Mesoscale Drivers of the Urban Heat Island of Moscow with Reference and Crowdsourced Observations. Frontiers in Environmental Science, 2021, vol. 9, pp. 716968. https://doi.org/10.3389/fenvs.2021.716968

Rizwan A.M., Dennis L.Y.L., Liu C. A review on the generation determination and mitigation of Urban Heat Island. Journal of Environmental Sciences, 2008, vol. 20, pp. 120-8.

Manoli G., Fatichi S., Bou-Zeid E., Katul G.G. Seasonal hysteresis of surface urban heat islands. Proceedings of the National Academy of Sciences, 2020, vol. 117, no. 13, pp. 7082-7089.

Stewart I.D., Oke T.R. Local Climate Zones for Urban Temperature Studies. Bulletin of American Meteorological Society, 2012, vol. 93, pp. 1879-1900. https://doi.org/10.1175/BAMS-D11-00019.1

Stjern C.W. Weekly cycles in precipitation and other meteorological variables in a polluted region of Europe Atmos. Chemical Physics, 2011, vol. 11, pp. 4095-104.

Sun H., Chen Y., Zhan W. Comparing surface- and canopy-layer urban heat islands over Beijing using MODIS data. International Journal of Remote Sensing, 2015, vol. 36, pp. 5448-5465.

Zhang K., Wang R., Shan C., Da L. Temporal and spatial characteristics of the urban heat island during rapid urbanization in Shanghai. China. Environmental Monitoring and Assessment, 2009, vol. 169, no. 1-4. pp. 101-112

Hong J. W. [et al.]. Temporal dynamics of urban heat island correlated with the socioeconomic development over the past half-century in Seoul, Korea. Environmental Pollution, 2019, vol. 254, pp. 112934.

Chandler T.J. The climate of towns, Ch. 14 in the “The Climate of the British Isles”, Chandler T.J., and Gregory S. (eds.), London, Longman, 1976, pp. 307-329.

Tang C.S., Shi B., Gao L., Daniels J.L., Jiang H.T., Liu C. Urbanization effect on soil temperature in Nanjing, China. Energy and Buildings, 2011, vol. 43, no. 11, pp. 3090-3098.

Varquez A.C.G., Kanda M. Global urban climatology: a meta-analysis of air temperature trends (1960-2009). Climate and Atmospheric Science, 2018, vol. 1, no. 1, pp. 1-8.

Barmet P., Kuster T., Muhlbauer A., Lohmann U. Weekly cycle in particulate matter versus weekly cycle in precipitation over Switzerland. Journal of Geophysical Research, 2009, vol. 114 (D05206).


Full text (russian)