«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2022. Vol 41

Assessment of the Lands of Agricultural Zones of the Tomsk Region Based on the Results of Modeling the Moisture Scale

Author(s)
S. G. Kopysov, A. O. Eliseev, A. G. Dyukarev
Abstract
The scientific novelty of the relevance of this study is caused by the fact that for the effective development and use of space, an integral criterion is needed, calculated on the basis of spatially distributed data, characterizin the local hydrological and climatic conditions of growth, formed under the influence of landscape conditions. The aim of the work is to develop and verify a method for assessing the quality of land based on the results of hydrological and climatic modeling of the stages of humidification by L. G. Ramensky. The lands with moisture scale 55-70 were accepted as the most suitable for agroindustrial use. The studied territory, even within the same agricultural zone, is very heterogeneous, with a mosaic distribution of moisture levels. Unfavorable technological properties of land – high waterlogging, small-contour fields increase the cost of their processing, making agriculture in modern conditions low-profitable. For agricultural zones of the Tomsk region, according to the described method, the calculation of moisture scale was performed. A comparison of the estimates of land suitability based on the results of hydrological and climatic modeling of moisture scale with those previously obtained for agricultural zones of the Tomsk region showed good convergence for 8 zones out of 10. This allows us to consider the calculation of L. G. Ramensky's moisture scale as a working tool for optimizing land management. It should be noted that the use of the SRTM-height matrix, due to its inherent disadvantages, does not allow performing a fully adequate on-farm land assessment. It is necessary to use better digital terrain models. The received assessments of the quality of land resources confirm that high-quality land resources in the Tomsk region are very limited and appropriate efforts should be made to preserve them. In particular, the least productive arable land should be transferred to hayfields, and distant unused agricultural land to forest plantations with valuable tree species.
About the Authors

Kopysov Sergey Gennadevich, Candidate of Sciences (Geography), Leading Research Scientist, Institute of Monitoring of Climatic and Ecological Systems SB RAS, 10/3, Akademicheskij av., Tomsk, 634055, Russian Federation, e-mail: wosypok@mail.ru

Eliseev Artem Olegovich, Postgraduate, Institute of Monitoring of Climatic and Ecological Systems SB RAS, 10/3, Akademicheskij av., Tomsk, 634055, Russian Federation, e-mail: kuzoller@gmail.com

Dyukarev Anatoly Grigorevich, Doctor of Sciences (Geography), Chief Research Scientist, Institute of Monitoring of Climatic and Ecological Systems SB RAS, 10/3, Akademicheskij av., Tomsk, 634055, Russian Federation, e-mail: DAG@imces.ru

For citation
Kopysov S.G, Eliseev A.O., Dyukarev A.G. Assessment of the Lands of Agricultural Zones of the Tomsk Region Based on the Results of Modeling the Moisture Scale. The Bulletin of Irkutsk State University. Series Earth Sciences, 2022, vol. 41, pp. 63-76. https://doi.org/10.26516/2073-3402.2022.41.63 (in Russian)
Keywords
UDC
631.111.3
DOI
https://doi.org/10.26516/2073-3402.2022.41.63
References

Khmelev V.A. Tyumentsev N.F., Goncharenko, A.V., Shcherbinin V.I. Bonitirovka pochv na genetiko-proizvodstvennoy osnove [Soil appraisal on genetic-production basis]. Novosibirsk, Nauka Publ., 1982, 213 p. (in Russian).

Karnatsevich I.V., Mezentseva O.V., Tusupbekov G.A., Bikbulatova G.G. Vozobnovlyaemye resursy teplovlagoobespechennosti Zapadno-Sibirskoy ravniny i dinamika ikh kharakteristik [Study of dynamics and mapping of elements of energy and water balance and characteristics of energy and water availability]. Omsk, Omsk State Agricultural University Press Publ., 2007, 268 p. (in Russian).

Bulgakov D.S., Rukhovich D.I., Shishkonakova E.A., Vilchevskaya E.V. Vydeleniye agroklimaticheskikh arealov dlya optimalnogo vozdelyvaniya selskokhozyaystvennykh kultur v granitsakh prirodno-selskokhozyaystvennogo rayonirovaniya territorii Rossii [Separation of Agroclimatic areas for optimal crop growing within the framework of the natural-agricultur zoning of Russia]. Pochvovedenie [Eurasian Soil Science], 2016, vol. 49, no. 9, pp. 1049-1060. https://doi.org/10.1134/S1064229316070036

Vydrin A. P. Zemelnyj fond i kolonizaciya Tomskoj gubernii [Land fund and colonization of the Tomsk province]. Tomsk, 1918, 33 p. Available at: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000393536 (date of access: 15.11.2019) (in Russian).

Dorofeev M. V., Semikolenov M. V. The influence of natural-geographic factor on resettlement in Siberia during Stolypin’s agrarian reform. Bulletin of Kemerovo State University, 2012, no. 3(51), pp. 54-57. (in Russian).

Dyukarev A. G. Agricultural zoning of the Tomsk region on the basis of the quality of land resource. Pochvy v biosfere: Sbornik materialov vserossijskoj nauchnoj konferencii s mezhdunarodnym uchastiem, posvyashchennoj 50-letiyu Instituta pochvovedeniya i agrohimii SO RAN, Novosibirsk, Nacionalnyj issledovatelskij Tomskij gosudarstvennyj universitet Publ., 2018, pp. 59-63. (in Russian).

Edinyi gosudarstvennyi reestr pochvennykh resursov Rossii. Versiya 1.0 [Unified State Register of Soil Resources of Russia. Version 1.0]. Moscow, Pochvennyi Inst. im. V.V. Dokuchaeva, Ross. Akad. Selskokhozyaistvennykh Nauk Publ., 2014, 768 p. (in Russian).

Kiryushin V.I. Developing the paradigm of environmental management in agriculture (to the 175-th anniversary of V.V. Dokuchaev). Dokuchaev Soil Bulletin, 2021, Special Iss., pp. 5-26. https://doi.org/10.19047/0136-1694-2021-D-5-26 (in Russian)

Kiryushin V.I. Methodology for integrated assessment of agricultural land. Eurasian Soil Science, 2020, vol. 53, no. 7, pp. 960-967. https://doi.org/10.1134/S1064229320070066

Mezencev V.S., Karnacevich I.V. Uvlazhnennost Zapadno-Sibirskoy ravniny [Wetness of West Siberian Plain]. Leningrad, Gidrometeoizdat Publ., 1973, 168 p. (in Russian).

Nefedova T.G., Medvedev A.A. Shrinkage of Active Space in Central Russia: Population Dynamics and Land Use in Countryside. Izv. Ross. Akad. Nauk, Ser. Geogr., 2020, vol. 84, no. 5, pp. 645-659. https://doi.org/10.31857/S258755662005012X (in Russian)

Panin P.S., Kovalev R.V. Meliorativnyj fond zemel Zapadnoj Sibiri v predelah sredinnogo regiona [Land meliorative fund of Western Siberia within the Middle region]. Prirodnye resursy Sibiri (issledovaniya, preobrazovaniya, ohrana). Novosibirsk, Nauka Publ., 1976, pp. 126-134. (in Russian)

Ramensky L.G. Problemy i metody izucheniya rastitelnogo pokrova. Izbrannye raboty [Issues and methods of vegetation cover study]. Leningrad, Nauka Publ., 1971, 334 p. (in Russian)

Rutkovskaya N.V. Geografiya Tomskoj oblasti. Sezonno-agroklimaticheskie resursy [Geography of the Tomsk region. Seasonal agroclimatic resources]. Tomsk, Tomsk Univ. Publ., 1984, 159 p. (in Russian)

Tyumentsev N.F. Kratkie itogi bonitirovki pochv kolhozov Tomskoj oblasti [Summary of the results of soil assessment of collective farms of the Tomsk region]. Pochvovedenie (Pedology). 1961, no. 9, pp.67-78. (in Russian).

Shashko D.I. Agroklimaticheskoe rajonirovanie SSSR [Agroclimatological zoning of the USSR]. Moscow, Kolos Publ., 1967, 336 p. (in Russian).

Ellenberg H. Ziegerwerte der Gefaspflanzen Mitteleuropeas. Gottingen, Scripta geobotanica Publ., 1974, vol 9, 197 p. (in Germany).

Fick S.E., Hijmans R.J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 2017, vol. 37, pp. 4302–4315.

Winkler K., Fuchs R., Rounsevell M. et al. Global land use changes are four times greater than previously estimated. Nature Communications. 2021. no. 12, 2501. https://doi.org/10.1038/s41467-021-22702-2

Hamilton R., Benton R. A review of predictive ecosystem mapping. RSAC-0121-RPT2. Salt Lake City, UT: U.S. Department of Agriculture, Forest Service, Remote Sensing Applications Center. 2010. 18 p.

Kopysov S.G., Chernova N.A., Klimova N.V. Validation of vegetation type modeling at a local level using a moisture scale. IOP Conf. Series: Earth and Environmental Science, 2018, vol. 211, no. 012032, pp. 1-5. https://doi.org/10.1088/1755-1315/211/1/012032

Landolt E. Okologische Zeigerwerts zur Sweizer Flora. Zurich, Veroff. Geobot. Inst. ETH, 1977, 208 p. (in Switzerland).

Yang H., Yang D., Lei Z., Sun F. New analytical derivation of the mean annual water-energy balance equation. Water Resource, 2008, no. 44. W03410. https://doi.org/10.1029/2007WR006135

Schierhorn F., Muller D., Beringer T., Prishchepov A.V, Kuemmerle T., Balmann A. Post-Sovietcropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Global Biogeochemical Cycles, 2013, no. 27, pp. 1175–1185. https://doi.org/10.1002/2013GB004654

System for Automated Geoscientific Analyses (SAGA). Available at: http://www.saga-gis.org/en/index.html (date of access: 15.11.2019)

Meyfroidt P. et. al. Ten facts about land systems for sustainability. PNAS. February 7, 2022, vol. 119 no.7. https://doi.org/10.1073/pnas.2109217118

Farr T.G., Hensley S., Rodriguez E., Martin J., Kobrick M. The shuttle radar topography mission. CEOS SAR Workshop. Toulouse 26-29 Oct. 1999. Noordwijk, 2000, pp. 361-363.


Full text (russian)