«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2022. Vol 40

Paleoseismogenic Displacements in Cape Rytyi Area on the Northwestern Shore of Lake Baikal

Author(s)
O. V. Lunina, I. A. Denisenko, C. H. G. Braga
Abstract
In connection with a series of sensible earthquakes in the Baikal-Mongolian region at the end of 2020 – beginning of 2021, the population of the area has increased interest in the zones of possible earthquake sources and their seismic potential. In this regard, we carried out a detailed mapping of paleoseismogenic deformations within one of the most mysterious places on Lake Baikal – Cape Rytyi and its vicinity crossed by the zone of the Kocherikovsky active fault. Along the ruptures in the rear part of the Rita river delta, based on displacement measurements of the original surfaces on the hypsometric profiles, the vertical displacements are reconstructed and compared with ground penetrating radar data. It has been established that the deformations in the studied area are associated with at least two paleoearthquakes. The maximum movement at the first one was 7,9 m, at the second one – 5,0 m. The magnitude estimates calculated from the known equations using these displacements were: Mw of the earlier event 7,3, Ms = 7,4; Mw of the later event is 7,1, Ms = 7,3. It is noted that the preservation of seismogenic scarps, their dip angles and the degree of burial strongly depend on the initial landscape and can differ even within a few hundred meters for a single rupture. This fact must be taken into account when conducting paleoearthquake studies and determining the rupture parameters.
About the Authors

Lunina Oksana Viktorovna, Doctor of Sciences (Geology and Mineralogy), Principal Researcher, Institute of the Earth’s Crust SB RAS, 128, Lermontov st., Irkutsk, 664033, Russian Federation, e-mail: lounina@crust.irk.ru

Denisenko Ivan Alexandrovich, Junior Research Scientist, Institute of the Earth’s Crust SB RAS, 128, Lermontov st., Irkutsk, 664033, Russian Federation, e-mail: denisenkoivan.1994@mail.ru

Braga Carlos Henrique Guerra, Student, Faculty of Geology and Geography, Tomsk State University, 36, Lenin st., Tomsk, 634050, Russian Federation, e-mail: carloshenrique_gb@hotmail.com

For citation
Lunina O.V., Denisenko I.A., Braga C.H.G. Paleoseismogenic Displacements in Cape Rytyi Area on the Northwestern Shore of Lake Baikal. The Bulletin of Irkutsk State University. Series Earth Sciences, 2022, vol. 40, pp. 70-81. https://doi.org/10.26516/2073-3402.2022.40.70 (in Russian)
Keywords
paleoseismogenic rupture, scarp, displacement, ground penetrating radar, Cape Rytyi.
UDC
551.243.1 (571.53)
DOI
https://doi.org/10.26516/2073-3402.2022.40.70
References

Burmeister A.A., Kostyunin O.V. Tainy Baikala: Gnevnyi mys Rytyi [Secrets of Baikal: Wrathful Cape Rytyi]. Irkutsk, Oblmashinform Publ., 2006, 159 p. (in Russian)

Geologicheskaya karta masshtaba 1:200 000, seriya Pribaikalskaya, list № 49-XIX [Geological Map. 1974. Scale 1:200,000, Pribaikal’skaya Series, Sheet No. 49-XIX]. Moscow, Aerogeologiya Publ., 1974. (in Russian)

Lunina O.V. Vliyanie napryazhennogo sostoyaniya litosfery na sootnoshenie parametrov i vnutrennyuyu strukturu seismoaktivnykh razlomov [Influence of the lithosphere state of stresses on the relationships of the parameters and inner structure of seismically active faults]. Cand. sci. diss. abstr. Irkutsk, 223 p. (in Russian)

Chipizubov A.V., Mel'nikov A.I., Stolpovskii A.V., Baskakov V.S. Paleoseismodislokatsii i paleozemletryaseniya v predelakh Baikalo-Lenskogo zapovednika (zona Severobaikal'skogo razloma) [Paleoseismic dislocations and paleoearthquakes within the Baikal-Lena Reserve (zone of the Severobaikalsky fault]. Proceedings of Baikal-Lena State Nature Reserve, 2003, issue 3, Irkutsk, pp. 6–18. (in Russian)

Seismotektonika i seismichnost riftovoi sistemy Pribaikaliya [Seismotectonics and Seismicity of the Rift System of Pribaikalie]. Moscow, Nauka Publ., 2003, 220 p. (in Russian)

Strom A.L., Nikonov A.A. Sootnosheniya mezhdu parametrami seismogennykh razryvov i magnitudoi zemletryasenii [Numerical parameters of seismic faults and their use in paleoseismology and engineering geology]. Izvestiya. Physics of the Solid Earth [Physics of the Earth], 1997, N 12, pp. 55-67.

Middleton T.A., Walker R.T., Parsons B., Lei Q., Zhou Y., Ren Z. A major, intraplate, normalfaulting earthquake: The 1739 Yinchuan event in northern China. J. Geophys. Res. Solid Earth, 2016, vol. 121, pp. 293-320. https://doi.org/10.1002/2015JB012355

Imaeva L.P., Imaev V.S., Smekalin O.P., Grib N.N. A Seismotectonic Zonation Map of Eastern Siberia: New Principles and Methods of Mapping. Open Journal of Earthquake Research, 2015, vol. 4, pp. 115-125. http://dx.doi.org/10.4236/ojer.2015.44011

Meghraoui M., Camelbeeck T., Vanneste K., Brondeel M. Active faulting and paleoseismology along the Bree fault, lower Rhine graben, Belgium. J. Geophys. Res, 2000, vol. 105 (B6), pp. 13,809–13,841. https://doi.org/10.1029/1999JB900236

Štěpančíková P., Hók J., Nývlt D., Dohnal J, Sýkorová I., Stemberk J. Active tectonics research using trenching technique on the south-eastern section of the Sudetic Marginal Fault (NE Bohemian Massif, central Europe). Tectonophysics, 2010, vol. 485, pp. 269-282.https://doi.org/10.1016/j.tecto.2010.01.004

Bonilla M.G., Mark R.K., Lienkaemper J.J. Statistical relations among earthquake magnitude, rupture length and surface fault displacement. Bull. Seism. Soc. Amer, 1984, vol. 74 (6), pp. 2379–2412.

Carbonel D., Gutiérrez F., Sevil J., McCalpin J.P. Evaluating Quaternary activity versus inactivity on faults and folds using geomorphological mapping and trenching: Seismic hazard implications. Geomorphology, 2019, vol. 338, pp. 43-60. https://doi.org/10.1016/j.geomorph.2019.04.015

Beauprêtre S., Garambois S., Manighetti I., Malavieille J., Senechal G., Chatton M., Davies T., Larroque C., Rousset D., Cotte N., Romano C. Finding the buried record of past earthquakes with GPR – based palaeoseismology: a case study on the Hope fault, New Zealand. Geophys. J. Int., 2012, vol. 189. pp. 73-100. https://doi.org/10.1111/j.1365-246X.2012.05366.x

Bano M., Dujardin J-R., Schlupp A., Tsend-Ayush N., Munkhuu U. GPR measurements to assess the characteristics of active faults in Mongolia. IEICE Technical Report, 2017, no. SANE2017-43 (2017–10), pp. 1-6.

Lunina O.V., Denisenko I.A. Single-event throws along the Delta Fault (Baikal rift) reconstructed from ground penetrating radar, geological and geomorphological data. Journal of Structural Geology, 2020, vol. 141, pp. 104209. https://doi.org/10.1016/j.jsg.2020.104209

Lunina O. V., Gladkov A. A. Rupturing in the deltaic deposits of Cape Rytyi on the northwestern shore of Lake Baikal (based on aerial photography data). Russian Geology and Geophysics, 2022, vol. 63, no. (2), pp. 149-162. https://doi.org/10.15372/GiG2020204

McCalpin J.P. Paleoseismology. 2nd ed. Amsterdam, Academic Press, Elsevier, 2009, 613 p.

McClymont A.F., Villamor P., Green A.G. Fault displacement accumulation and slip rate variability within the Taupo Rift (New Zealand) based on trench and 3-D ground penetrating radar data. Tectonics, 2009, vol. 28, p. TC4005. https://doi.org/10.1029/2008TC002334

Roberts G.,P., Raithatha B., Sileo G., Pizzi A., Pucci S., Walker J.F., Wilkinson M., McCaffrey K., Phillips R.J., Michetti A.M., Guerrieri L., Blumetti A.M., Vittori E., Cowie P., Sammonds P., Galli P., Boncio P., Bristow C., Walters R. Shallow subsurface structure of the 2009 April 6 Mw 6.3 L’Aquila earthquake surface rupture at Paganica, investigated with ground-penetrating radar. Geophys. J. Int., 2010, vol. 183, pp. 774–790. https://doi.org/10.1111/j.1365-246X.2010.04713.x

Wilkinson M., Roberts G.P., McCaffrey K., Cowie P., Faure Walker J.P., Papanikolaou I., Phillips R.J., Michettii A.M., Vottory E., Gregory L., Wedmore L., Watson Z.K. Slip distribution on active normal faults measured from LiDAR and field mapping of geomorphic offset: an example from L’Aquila, Italy, and implications for modelling seismic moment release. Geomorphology, 2015, vol. 237, pp. 130–141. https://doi.org/10.1016/j.geomorph.2014.04.026

Wells D.L., Coppersmith K.J. New emprical relationship among magnitude, rupture length, rupture width, rupture area and surface displacement. Bulletin of the Seismological Society of America, 1994, vol. 84 (4), pp. 974–1002.


Full text (russian)