«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2022. Vol 39

The Radon Flux Density is 222 in the Soils of the Tobolsk District of the Tyumen Region

Author(s)

A. P. Kolobov

Abstract
The aim of the work is to determine potentially radon dangerous areas for the local population on the territory of Kondinskaya lowland within the boundaries of Tobolsk district of Tyumen region with the help of radon monitoring complex “CAMERA-01”. The density of the radon-222 flux was defined at the soil depth from 0 to 100 cm in 10 plots. The plots are located on the low above floodplain terrace, in the levee and central floodplains of the Irtysh River and a tributary of the Tobol River – the Suklyomka River. The highest average value of radon-222 exhalation from the soil surface was found in the vicinity of Makedonova village – 39 mBq/(m2·s), in the rest of the tested soil plots it was not more than 18 mBq/(m2·s). The received data on density of radon-222 flux from the surface of soils of the investigated plots make it possible to say that they do not refer to potentially radon-hazardous. At the same time it is found that the territories around the village Usharovo, the village of Makedonova and settlement Savinsky Zaton (floodplain terraces of the Irtysh River) at a depth of 40 to 100 cm have average values of the flux density of natural radionuclide exceeding 200 mBq/(m2·s). Only in soils of the floodplain terrace of the river Suklyomka – a tributary of the Tobol river the radon– 222 flux density below 80 mBq/(m2 s) – I class of radon-hazard was fixed at the whole investigated depth. The highest average density of the radon–222 flow (1200 mBq/(m2·s)) at the depth of 100 cm was found in the vicinity of the settlement Savinsky Zaton, probably associated with the transfer of radon-222 from groundwater of the liquidated well, near which the sampling of radon-222 was made.
About the Authors
Kolobov Anatolii Pavlovich, Senior Laboratory Assistant, Tobolsk Complex Scientific Station UB RAS, 15, Akademik Yuriy Osipov st., Tobolsk, 626152, Russian Federation, e-mail: kolobovap@tobscience.ru
For citation
Kolobov A. P. The Radon Flux Density is 222 in the Soils of the Tobolsk District of the Tyumen Region. The Bulletin of Irkutsk State University. Series Earth Sciences, 2022, vol. 39, pp. 56-68. https://doi.org/10.26516/2073-3402.2022.39.56 (in Russian)
Keywords
radon, radon flux density-222, Tobolsk district, Kondinskaya lowland, Tyumen region.
UDC
546.296:631.4(571.1)
DOI
https://doi.org/10.26516/2073-3402.2022.39.56
References

Berdnikov P.V., Gor'kij A.V. Izuchenie radonoopasnosti territorii Sankt-Peterburga i Leningradskoj oblasti [Study of the radon-hazardous territory of the St. Petersburg and the Leningrad region].ANRI [ANRI]. 2008, no. 2, pp. 56-59. (in Russian)

Dorozhko A.L. Prirodnyj radon: problemy i reshenija [The natural radon: problems and solutions]. Razvedka i ohrana nedr [Prospect and protection of mineral resources]. 2010, no 8, pp. 50-56. (in Russian)

Nikiforov D.V. et al. Zdorov'e naselenija radonoopasnyh territorij [Public health in radon-affected territories]. Jekologija cheloveka [Human Ecology]. 2019, no. 1, pp. 40-50. (in Russian)

Kogarko I.N. et al. K voprosu o formirovanii adaptivnogo otveta pod dejstviem prirodnogo i professional'nogo faktorov hronicheskogo obluchenija. Obzor literatury [Induction of adaptive response to chronic environmental and occupational exposure to radiation]. Radiacija i risk (Bjulleten' Nacional'nogo radiacionno-jepidemiologicheskogo registra) [Radiation and Risk (Bulletin of the National Radiation and Epidemiological Registry)]. 2021, vol. 30, no. 3, pp. 134-148. https://doi.org/10.21870/0131-3878-2021-30-3-134-148 (in Russian)

Karetin L.N. Pochvy Tjumenskoj oblasti [Soils of the Tyumen region]. Novosibirsk, Nauka Publ., 1990, 286 p. (in Russian)

Kozlova I.A., Jurkov A.K. Metodicheskie voprosy izmerenija soderzhanija radona-222 v pochvennom vozduhe pri monitoringovyh nabljudenijah [Methodological issues of measuring the content of radon-222 in soil air during monitoring observations]. Yralskiy geofizicheskij vestnik [Ural Geophysical Bulletin]. 2005, no. 1, pp. 30-34. (in Russian)

Konstantinova E.Yu. Pochvy oblasti sopryazheniya vysokikh terras reki Irtysh s kraevoi chast''yu vozvyshennosti Tobol''skii materik [Soils of high Irtysh River terraces and the marginal part of Tobolsk continent upland conjunction area] Vestnik Tomskogo Gosudarstvennogo Universiteta. Biologiya [Tomsk State University Journal of Biology], 2016, no. 2 (34), pp. 6-18. https://doi.org/10.17223/19988591/34/1 (in Russian)

Kuramshina N.G., Urmanova A.R. Radiacionno-gigienicheskaja ocenka potencial'noj radonoopasnosti territorij i zdorov'ja naselenija Respubliki Bashkortostan [Radiation and hygienic assessment of potential radon danger of territories and health of the population of the republic of Bashkortostan]. Materialy XV Mezhdunarodnoi nauchno-tehnicheskoi konferentsii “Nauka, obrazovanie, proizvodstvo v reshenii jekologicheskih problem (Jekologija-2019)” [Proseceedings of the 15th international scientific and technical conference “Science, education, production in solving environmental problems (Ecology-2019)”].Ufa, 2019, pp. 49-54. (in Russian)

Zlobina A.N. et al. Radiojekologicheskaja opasnost' dlja naselenija v rajonah rasprostranenija vysokoradioaktivnyh granitov [Radioecological hazard for the population living in the regions with high radioactive granites] Izvestija Tomskogo Politehnicheskogo Universiteta. Inzhiniring georesursov [Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering]. 2019, vol. 330, no. 3.

Rekomendacii Mezhdunarodnoj komissii po radiacionnoj zashhite ot 2007 goda. Publikacija 103 MKRZ [Recommendations of the International Commission on Radiological Protection 2007. ICRP Publication 103]. Translated into Russian by Gusev I.A. Moskow, Federal Medical Biophysical Center of Federal Medical Biological Agency, Russia, 2009, pp. 343. (in Russian)

Risk vozniknovenija raka legkogo pri obluchenii radonom i produktami ego raspada. Zajavlenie po radonu [Lung Cancer Risk from Radon and Progeny and Statement on Radon]. Translated into Russian by Zhukovskogo M. V. Moskow, Federal Medical Biophysical Center of Federal Medical Biological Agency, Russia, 2013, pp. 92. (in Russian)

Seminskij A.K., Seminskij K.Zh. Predvaritel'nye rezul'taty issledovanija vzaimosvjazi sejsmicheskoj aktivnosti s koncentraciej radona v podzemnyh vodah Juzhnogo Priangar'ja [Preliminary results of the study of the relationship of seismic activity with the concentration of radon in groundwater in the Southern Angara region]. Izvestija Irkutskogo gosudarstvennogo universiteta. Serija Nauki o Zemle [The Bulletin of Irkutsk State University. Series Earth Sciences]. 2020, vol. 33, pp. 100-111. https://doi.org/10.26516/2073-3402.2020.33.100 (in Russian)

Suhonosenko D.S. Radiacionnye parametry landshaftnyh rajonov i tehnogennyh kompleksov Volgogradskoj oblasti [Radiation parameters of landscaped areas and technogenic complexes of the volgograd region]. Izvestija vysshih uchebnyh zavedenij. Severo-Kavkazskij region. Estestvennye nauki [Bulletin of higher education institutes North Caucasus region. Natural sciences]. 2008, no. 3, pp. 84-88. (in Russian)

Utkin V.I., Jurkov A.K. Radon kak indikator geodinamicheskih processov [Radon as a tracer of tectonic movements]. Geologija i geofizika [Russian Geology and Geophysics], 2010, vol. 51, no. 2, pp. 277-286. (in Russian)

Ahmad N. et al. An overview of radon concentration in Malaysia. Journal of radiation research and applied sciences, 2017, vol. 10, no. 4, pp. 327-330. https://doi.org/10.1016/j.jenvrad.2011.10.001

Iimoto T. et al. Application of activated charcoal radon collectors in high humidity environments. Journal of environmental radioactivity, 2005, vol. 78, no. 1, pp. 69-76. https://doi.org/10.1016/j.jenvrad.2004.03.037

Alonso H. et al. Assessment of radon risk areas in the Eastern Canary Islands using soil radon gas concentration and gas permeability of soils. Science of the Total Environment, 2019, vol. 664, pp. 449-460. https://doi.org/10.1016/j.scitotenv.2019.01.411

Escobar V.G., Tome F.V., Lozano J.C. Procedures for the determination of 222Rn exhalation and effective 226Ra activity in soil samples. Applied radiation and Isotopes, 1999, vol. 50, no 6, pp. 1039-1047. https://doi.org/10.1016/S0969-8043(98)00121-3

Romero-Mujalli G. et al. Indoor radon concentration and a diffusion model in dwellings situated in a subalkaline granitoid rea, Southern Brazil. Environmental Earth Sciences, 2021, vol. 80, no. 17. pp. 1-10. https://doi.org/10.1007/s12665-021-09849-3

Bourdon B. et al. Introduction to U-series geochemistry. Reviews in mineralogy and geochemistry, 2003, vol. 52, no. 1, pp. 1-21.

Muhammad A. et al. Long Short Term Memory networks (LSTM)-Monte-Carlo simulation of near surface ionization using radon. Journal of Atmospheric and Solar-Terrestrial Physics, 2021. https://doi.org/10.1016/j.jastp.2021.105688

Lumniczky K. et al. Low dose ionizing radiation effects on the immune system. Environment international, 2021, vol. 149, pp. 106212. https://doi.org/10.1016/j.envint.2020.106212

Majumder R.K. et al. Measurement of radon concentrations and their annual effective doses in soils and rocks of Jaintiapur and its adjacent areas, Sylhet, North-east Bangladesh. Journal of Radioanalytical and Nuclear Chemistry, 2021, pp. 1-13. https://doi.org/10.1007/s10967-021-07771-3

Trevisi R. et al. Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance. Journal of environmental radioactivity, 2012, vol. 105, pp. 11-20. https://doi.org/10.1016/j.jenvrad.2011.10.001

Muto J. et al. Preseismic atmospheric radon anomaly associated with 2018 Northern Osaka earthquake. Scientific reports, 2021, vol. 11, no. 1, pp. 1-8. https://doi.org/10.1038/s41598-021-86777-z

Omori Y. et al. Radon degassing triggered by tidal loading before an earthquake. Scientific reports, 2021, vol. 11, no. 1, pp. 1-10. https://doi.org/10.1038/s41598-021-83499-0

Slade D., Radman M. Oxidative stress resistance in Deinococcus radiodurans. Microbiology and molecular biology reviews, 2011, vol. 75, no. 1, pp. 133-191. https://doi.org/10.1128/MMBR.00015-10

Tsapalov A., Kovler K., Miklyaev P. Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface. Journal of environmental radioactivity, 2016, vol. 160, pp. 28-35. https://doi.org/10.1016/j.jenvrad.2016.04.016

Ahmad A. Y. et al. Vertical distribution and radiological risk assessment of 137 Cs and natural radionuclides in soil samples. Scientific reports, 2019, vol. 9, no. 1, pp. 1-14. https://doi.org/10.1038/s41598-019-48500-x

WHO Handbook on Indoor Radon: a Public Health Perspective. Geneva, WHO Press, 2009.


Full text (russian)