«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2021. Vol 38

Methodology of Rock Deformation Monitoring in Southern Baikal Region

Author(s)
S. A. Bornyakov, D. V. Salko, G. V. Vstovsky
Abstract

The Southern Baikal region is located within the limits of the actively developing Baikal rift zone (BRZ). Its seismic potential is significant, and M>7 earthquakes occur periodically with intensive shaking in the epicenters (up to 10 points). The problem of prediction and forecasting of strong earthquakes has always been critical for this region, considering its increasing urbanization, industrial clusters and transport systems. The article describes the methodology based on rock deformation monitoring data, which aims at developing a technology capable of efficient prediction and forecasting of strong earthquakes. The technology is based on the stick-slip model developed by of W. Brace and J. Byerlee and its synergetic interpretation proposed by Ma J. et al. This model shows the preparation of the earthquake source in stages, which is reflected in deformation monitoring data. An integral property of the deformation process is its self-organization right before an earthquake. The self-organization, that always takes place before a seismic event, is considered by the authors as an inevitable shortterm precursor. All other indicators that occur randomly are considered occasional precursors. The article is focused on the methodology aspects and describes the technical details of measuring the rock deformation. It presents the proven methods of data processing with the major goal of detecting the inevitable precursor. Described in detail are the structural-geodynamic conditions of the locations of rock deformation monitoring points in the study area. The main results are based on the rock deformation records taken before three strong earthquakes in the study area – Kultuk (August 27, 2008), Bystrinskoe (September 21, 2020), and Kudara (December 10, 2020) earthquakes. The study shows that, in contrast to the inevitable precursor, the occasional precursors are manifested depending on the geodynamic conditions of the earthquake source preparation, the position of the monitoring point relative to the source, and the structural conditions of the monitoring point location.

About the Authors

Bornyakov Sergei Alexandrovich, Senior Research, Candidate of Sciences (Geology and Mineralogy), Institute of the Earth’s Crust SB RAS, 128, Lermontov st., Irkutsk, 664003, Russian Federation, e-mail: bornyak@crust.irk.ru

Salko Denis Vladimirovich, Lead Engineer, Institute of the Earth’s Crust SB RAS, 128, Lermontov st., Irkutsk, 664003, Russian Federation, e-mail: denis@salko.net

Vstovskij Grigorij Valentinovich, Chief Scientist, Doctor of Sciences (Fizics and Mathematics), Central Research and Design Institute of Building Metal Structures named after N.P. Melnikov, 49, Arkhitektor Vlasov st., 117393, Moscow, Russian Federation, e-mail: vstovsky@gmail.com

For citation
Bornyakov S.A., Salko D.V., Vstovsky G.V. Methodology of Rock Deformation Monitoring in Southern Baikal Region. The Bulletin of Irkutsk State University. Series Earth Sciences, 2021, vol. 38, pp. 13-40. https://doi.org/10.26516/2073-3402.2021.38.13 (in Russian)
Keywords
earthquake, forecasting, prediction, rock deformation, monitoring
UDC
550.343.3
DOI
https://doi.org/10.26516/2073-3402.2021.38.13
References

Bornyakov S.A., Vstovsky G.V. Pervyj opyt sejsmodeformatsionnogo monitoringa Bajkal'skoj riftovoj zony (na primere Juzhno-Bajkalskogo zemletrjasenija 27 avgusta 2008g [The first experience of seismic deformation monitoring of the Baikal rift zone (on the example of the South Baikal earthquake on August 27, 2008)]. Doklady AN [Reports of the Academy of Sciences], 2010, vol. 431, no. 4, pp. 537-541. (in Russian)

Brillouin L. Nauchnaja neopredelennost i informatsija [Scientific Uncertainty and Information]. Moscow, Mir Publ., 1966, 271 p. (in Russian)

Bukharov A.A. Kajnozojskoe razvitie Bajkala po rezultatam glubokovodnyh i sejsmostratigraficheskih issledovanij [Cenozoic development of Baikal based on the results of deep-water and seismostratigraphic studies. Geologija i geofizika [Russian Geology and Geophysics], 1996, vol. 37, no. 12, pp. 98-107. (in Russian)

Bykov V.G. Deformatsionnye volny Zemli: kontseptsija, nabljudenija i modeli [Deformation waves of the Earth: concept, observations and models]. Geologija i geofizika [Russian Geology and Geophysics], 2005, vol. 46, no. 11, pp. 1176-1190. (in Russian)

Seminsky K.Zh., Bornyakov S.A., Dobrynina A.A., Radziminovich N.A., Rasskazov S.V., Sankov V.A., Mialle P., Bobrov A.A., Ilyasova A.M., Salko D.V., Sankov A.V., Seminsky A.K., Chebykin E.P., Shagun A.N., German V.I., Tubanov Ts.A., Ulzibat M. Bystrinskoe zemletrjasenie v Juzhnom Pribajkal'e (21.09.2020 g., Mw = 5.4): osnovnye parametry, priznaki podgotovki i soprovozhdajuschie `effekty [Bystrinskoe earthquake in the Southern Baikal region (September 21, 2020, Mw = 5.4): main parameters, preparation indicators and accompanying effects]. Geologija i geofizika [Russian Geology and Geophysics], 2021, vol. 62, no. 5, pp. 727-743. (in Russian)

Ruzhich V.V., Psakhie S.G., Chernykh E.N., Federyaev O.V., Dimaki A.V., Tirskikh D.S. Vlijanie vibroimpulsnyh vozdejstvij na aktivnost' smeschenij v treschinah gornogo massiva [Influence of vibration pulse effects on the activity of displacements in the cracks of a rock massif]. Fizicheskaya mezomekhanika [Physical Mesomechanics Journal], 2007, vol. 10, no. 1, pp. 19-24. (in Russian)

Zubarev D.N., Morozov V.G., Repke G. Statisticheskaja mehanika neravnovesnyh protsessov. [Statistical Mechanics of Nonequilibrium Processes]. Moscow, Fizmatlit Publ., 2002. 431 p. (in Russian)

Psakhie S.G., Ruzhich V.V., Shilko E.V., Astafurov S.V., Smekalin O.P. Izuchenie vlijanija vodonasyschenija i vibratsij na rezhim smeschenij v zonah razlomov [Study of the influence of water saturation and vibrations on the mode of displacements in fault zones] Fizicheskaya mezomekhanika [Physical Mesomechanics], 2004, vol. 7, no. 1, pp. 23-30. (in Russian)

Timofeev V.Yu., Sarycheva Yu.K., Panin S.F., Anisimova L.V., Gridnev D.G., Masalsky O.K. Issledovanie naklonov i deformatsij zemnoj poverhnosti v BRZ [Investigation of slopes and deformations of the Earth's surface in BRZ] Geologija i geofizika [Russian Geology and Geophysics], 2021, 1994, vol. 3, pp. 119-129. (in Russian)

Myachkin V.N. Protsessy podgotovki zemletrjasenij [Earthquake Preparation Processes]. Moscow, Nauka Publ., 1978, 231 p. (in Russian)

Ruzhich V.V., Vakhromeev A.G., Levina E.A., Sverkunov S.A., Shilko E.V. Ob upravlenii rezhimami sejsmicheskoj aktivnosti v segmentah tektonicheskih razlomov s primeneniem vibratsionnyh vozdejstvij i zakachki rastvorov cherez skvazhiny [On the control of seismic activity in the segments of tectonic faults with the use of vibration effects and injection of solutions through wells]. Fizicheskaya mezomekhanika [Physical Mesomechanics], 2020, vol. 23, no. 3, pp. 54-69. (in Russian)

Prigogine I., Kondepudi D. Sovremennaja termodinamika: ot teplovyh dvigatelej do dissipativnyh struktur [Modern Thermodynamics: From Heat Engines to Dissipative Structures], Moscow, Mir Publ., 2002, 460 p. (in Russian)

Psakhie S.G., Ruzhich V.V., Smekalin O.P., Shilko E.V. Rezhimy otklika geologicheskih sred pri dinamicheskih vozdejstvijah [Response modes of geological environments under dynamic influences. Fizicheskaya mezomekhanika [Physical Mesomechanics], 2001, vol. 4, no. 1, pp. 67-71. (in Russian)

Fomin Yu.N., Semibalamut V.M., Zhmud V.A., Panov S.V., Parushkin M.D., Dimitrov L.V. Rezul'taty deformograficheskih izmerenij v shtol'ne na observatorii Talaja [Results of deformographic measurements in an adit at the Talaya observatory]. Avtomatika i programmnaya inzheneriya [Automation and Software Engineering], 2019, no. 1 (27), pp. 65-75. (in Russian)

Ruzhich V.V. Vysokotochnyj izmeritel'nyj kompleks “Sdvig” [High-precision measuring complex “Shift”]. Nauchnyi i promyshlennyi potentsial Sibiri. Investitsionnye proekty, novye tekhnologii razrabotki. Mezhdunarodnyi katalog [Scientific and Industrial Potential of Siberia. Investment Projects and New Development Technologies. International Catalogue]. Novosibirsk, CJSC Novosibirsk Biographical Center Publ., 2004. pp. 90-91. (in Russian)

Salko D.V., Bornyakov S.A. Avtomatizirovannaja sistema dlja monitoringa geofizicheskih parametrov na geodinamicheskih poligonah [Automated system for monitoring geophysical parameters at geodynamic test sites. Pribory [Equipment], 2014, no. 6, pp. 24-28. (in Russian)

Sankov V.A., Lukhnev A.V., Miroshnichenko A.I., Dobrynina A.A., Ashurkov S.V., Byzov L.M., Dembelov M.G., Kale E., Deversher J. Sovremennye gorizontal'nye dvizhenija i sejsmichnost' juzhnoj chasti Bajkal'skoj vpadiny (Bajkal'skaja riftovaja sistema) [Modern horizontal movements and seismicity of the southern part of the Baikal depression (Baikal rift system)]. Fizika Zemli [Physics of the Earth], 2014, no. 6, pp. 70-79. (in Russian) https://doi.org/10.7868/S0002333714060076

Timofeev V.Yu. Prilivnye i medlennye deformatsii zemnoj kory juga Sibiri po `eksperimental'nym dannym [Tidal and Slow Deformations of the Earth's Crust in Southern Siberia According to Experimental Data. Brief PhD Thesis. Cand. sci. diss. abstr.]. Novosibirsk, 2004. Available at: http://earthpapers.net/prilivnye-i-medlennye-deformatsii-zemnoy-kory-yugasibiri-po-eksperimentalnym-dannym#ixzz6ukGtnTat (in Russian)

Haken H. Sinergetika [Synergetics]. Moscow, Mir Publ., 1980. 404 p. (in Russian)

Bak P., Tang C. Earthquakes as a self-organized critical phenomenon. J. Geoph. Res., 1989, vol. 94, no. B11, pp. 15,635-15,637.

Brace W.F., Byerlee J.D. Stick-slip as a mechanism for earthquake. Science, 1966, vol. 153, pp. 990-992.

Cicerone R.D., Ebel J.E., Britton J. A systematic compilation of earthquake precursors. Tectonophysics, 2009, vol. 476, pp. 371-396.

Ciliberto S., Laroche C. Experimental evidence of self-organization in the stick-slip dynamics of two rough elastic surface. J. de Phys. I France, 1994, vol. 4, pp. 223-236.

Bornyakov S.А., Ма J., Miroshnichenko A.I., Guo Y., Salko D.V., Zuev F.L. Diagnostics of meta-instable state of seismically active fault. Geodynamics & Tectonophysics, 2017, vol. 8, no. 4, pp. 989-998. https://doi.org/10.5800/GT-2017-8-4-0328

Geller R.G., Jackson D.D., Ragan Y.V., Mulargia F. Earthquake cannot be predicted. Science, 1997, vol. 275, pp. 1616-1617.

Feder J.S., Feder J. Self-organized criticality in stick-slip process. Phys. Rev. Lett., 1991, vol. 66 (20), pp. 2669-2672.

Velde B., Dubois J., Touchard G., Badri A. Fractal analysis of fractures in rocks: the Cantor’s Dust method. Tectonophysics, 1990, 179. P. 345-352.

Zhuo Y.-Q., Liu P., Chen S., Guo Y., Ma J. Laboratory observations of tremor-Likeevents generated during preslip. Geophysical Research Letters, 2018, vol. 45, no. 14, pp. 6926-6934.

Lomb N.R. Least-squares frequency analysis of unequally spaced data. Astrophys. Sp. Sci., 1976, vol. 39, pp. 447-462.

Ma J., Guo Y., Sherman S.I. Accelerated synergism along a fault: A possible indicator for an impending major earthquake. Geodynamics & Tectonophysics, 2014, vol. 2, pp. 87-99.

Ma J., Sherman S.I., Guo Y.S. Identification of meta-instable stress state based on experimental study of evolution of the temperature field during stick-slip instability on a bending fault. Sci. China Earth Sci., 2012, vol. 55, pp. 869-881.

Mandelbrot B.B. The fractal geometry nature. N.Y., Freeman, 1982, 480 p.

Olami, Z., Feder, H.J.S., Christensen, K. Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Physical Review Letters, 1992, vol. 68 (8), pp. 1244-1247.

Peng, Z. Gomberg J. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature geoscience, 2010, vol. 3, pp. 599-607.

Savransky D. Lomb (Lomb-Scargle) Periodogram. Mathlab Central, 2004. Available at: http://www.mathworks.com/matlabcentral/fileexchange/20004-lomb--lomb-scargle--periodogram

Scargle J.D. Studies in astronomical time series analysis. 2. Statistical aspects of spectral analysis of unevenly spaced data. The Astrophysical Journal, 1982, vol. 263, pp. 835-853.

Scargle J.D. Studies in astronomical time series analysis. 3. Fourier transforms. Autocorrelation function and cross-correlation functions of unevenly spaced data. The Astrophysical Journal, 1989, vol. 343, pp. 874-887.

Vstovsky G.V. Factual Revelation of Correlation Lengths Hierarchy in Micro- and Nanostructures by Scanning Probe Microscopy Data. Mater. Sci. (Kaunas), 2006, vol. 12, pp. 262-270.


Full text (russian)