«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2021. Vol. 37

Particularities of Vertical Displacements Along the Delta Fault During the 1862 Tsagan Earthquake on Lake Baikal

Author(s)
O. V. Lunina, I. A. Denisenko, A. A. Gladkov
Abstract

Based on the ground penetrating radar, geological and morphostructural data, the particularities of single-event vertical displacements in Holocene sediments of various competencies along the land and underwater segments of the Delta fault activated on January 12, 1862 during the M ~ 7.5 Tsagan earthquake (southeastern side of the Baikal rift.). It is shown that the slip determined from the scarp morphology and the position of the main rupture in the section reflects the total displacement value, which is the sum of the brittle and plastic deformational components. The presence of water-saturated poorly consolidated sediments in the geological section increases the contribution of the plastic component. In this case, the width of the rupture zone increases. Despite the fact that the northeastern segment of the Delta Fault was submerged in the water of Proval Bay, the largest seismotectonic displacements occurred between the villages of Kudara and Sherashevo and on the outskirts of the village Dubinino in the land southwestern part of the structure, where the total displacement was 9,59 and 9,28 m, respectively. No such depths were recorded in Proval Bay after the earthquake. Along the Delta Fault under water, seismotectonic displacements were relatively small with a rather significant contribution of the plastic component from 26 to 53 %. This slip was a trigger for the seismic- gravity subsidence of the bay and sediment compaction, which continues to this day, judging by its almost unchanged depth since 1862 and the proximity of numerous seismic events, including the last Мs = 5.4 09.12.2020 earthquake happened on December 9, 2020 and strongly felt in Irkutsk.

About the Authors

Lunina Oksana Viktorovna, Doctor of Sciences (Geology and Mineralogy), Leader Researcher, Institute of the Earth’s Crust SB RAS, 128, Lermontov st., Irkutsk, 664033, Russian Federation, e-mail: lounina@crust.irk.ru

Denisenko Ivan Alexandrovich, Junior researcher, Institute of the Earth’s Crust SB RAS, 128, Lermontov st., Irkutsk, 664033, e-mail: denisenkoivan.1994@mail.ru

Gladkov Anton Andreevish, Candidate of Sciences (Geology and Mineralogy), Research Scientist, Institute of the Earth’s Crust SB RAS, 128, Lermontov st., Irkutsk, 664033, Russian Federation,e-mail: anton90ne@rambler.ru

For citation

Lunina O.V., Denisenko I.A., Gladkov A.A. Particularities of Vertical Displacements Along the Delta Fault During the 1862 Tsagan Earthquake on Lake Baikal. The Bulletin of Irkutsk State University. Series Earth Sciences, 2021, vol. 37, pp. 70-85. https://doi.org/10.26516/2073-3402.2021.37.70 (in Russian)

Keywords
ground penetrating radar, Delta Fault, Lake Baikal, Thagan earthquake, parameters, displacement.
UDC
551.243.1(571.54)
DOI
https://doi.org/10.26516/2073-3402.2021.37.70
References

Vladov M.L., Starovoitov A.V. Vvedenie v georadiolokatsiyu. Uchebnoe posobie [Fundamentals of GPR Surveys. A Manual]. Moscow, Moscow University Press, 2004, 153 p. (in Russian)

Drizhenko F.K. Atlas ozepa Baikal. Sostavlen gidpofizicheckoi ekspeditsiei pod rukovodctvom polkovnika F.K. Drizhenko [Atlas of Lake Baikal. Compiled by Gydrophysical expedition under guidance of colonel F.K. Drizhenko]. St. Petersburg, Main hydrogr. administration press., 1908, 31 p. (in Russian)

Demin E.V. Antologiya Provala: Istoricheskie materialy o katastroficheskom Tsaganskom zemletryasenii 1862 g. – Provale na Baikale [Anthology of a Collapse: Historic Accounts of the Catastrophic Tsagan Earthquake of 1862 in Proval Bay, Lake Baikal]. Ulan-Ude, Administration of Kaban region of the Rep. Buryatia, 2005, 296 p. (in Russian)

Orlov A.P. O zemletryaseniyakh voobshche i o zemletryaseniyakh Yuzhnoi Sibiri i Turkestanskoi oblasti v osobennosti [About earthquakes in general and earthquakes in Southern Siberia and the Turkestan region in particular]. Kazan, Litho- and printing house of K.A. Tilly, 1872, B. 1, 78 p.

Fitingof A.Kh. Opisanie mectnosti pri uct'e reki Selengi, opustivsheisya ot zemletryacenii 30 i 31 dekabrya 1861 goda [Description of the area at the Selenga Mouth, collapsed by earthquakes of 30 and 31 December 1861]. Gornyi Zhurnal, 1865, vol. 3 (7), pp. 95-101. (in Russian)

Wika S., Imetkhenov A.В., Ovchinnikov G.I., Snytko V.A., Szczypek T. Eolovye i abrazionnye protsessy poberezhii u zaliva Proval na Baikale [Aeolian and abrasion processes of shore lines near Proval Bay (Lake Baikal)]. Irkutsk, Ulan-Ude, V.B. Sochava Institute of Geography SB RAS Publ., Institute of Earth Crust SB RAS Publ., Buryat State University Publ., 2006, 56 p. (in Russian)

Middleton T.A., Walker R.T., Parsons B., Lei Q., Zhou Y., Ren Z. A major, intraplate, normal-faulting earthquake: The 1739 Yinchuan event in northern China. J. Geophys. Res. Solid Earth, 2016, vol. 121, pp. 293-320. https://doi.org/10.1002/2015JB012355

Meghraoui M., Camelbeeck T., Vanneste K., Brondeel M. Active faulting and paleoseismology along the Bree fault, lower Rhine graben, Belgium. J. Geophys. Res, 2000, vol. 105 (B6), pp. 13809-13841. https://doi.org/10.1029/1999JB900236

Ferrill D.A., Morris A.P. Fault zone deformation controlled by carbonate mechanical stratigraphy, Balcones fault system, Texas. AAPG Bull., 2008, vol. 92, pp. 359-380. https://doi.org/10.1306/10290707066

Beauprêtre S., Garambois S., Manighetti I., Malavieille J., Senechal G., Chatton M., Davies T., Larroque C., Rousset D., Cotte N., Romano C. Finding the buried record of past earthquakes with GPR – based palaeoseismology: a case study on the Hope fault, New Zealand. Geophys. J. Int., 2012, vol. 189. pp. 73-100. https://doi.org/10.1111/j.1365-246X.2012.05366.x

Bano M., Dujardin J-R., Schlupp A., Tsend-Ayush N., Munkhuu U. GPR measurements to assess the characteristics of active faults in Mongolia. IEICE Technical Report, 2017, no. SANE2017-43 (2017-10), pp. 1-6.

Faure Walker J.P.F., Roberts G.P., Cowie P.A., Papanikolaou I.D., Sammonds P.R., Michetti A.M., Phillips R.J. Horizontal strain-rates and throw-rates across breached relay zones, central Italy: Implications for the preservation of throw deficits at points of normal fault linkage. J. Struct. Geol., 2009, vol. 31, no. 10, pp. 1145-1160. https://doi.org/10.1016/j.jsg.2009.06.011

Lunina O.V., Andreev A.V., Gladkov A.S. The Tsagan earthquake of 1862 on Lake Baikal revisited: a study of secondary coseismic soft-sediment deformation. Russian Geology and Geophysics, 2012, vol. 53, pp. 571-587.

Lunina O.V., Denisenko I.A. Single-event throws along the Delta Fault (Baikal rift) reconstructed from ground penetrating radar, geological and geomorphological data. J. Struct. Geol., 2020, vol. 141, p. 104209. https://doi.org/10.1016/j.jsg.2020.104209

Mats V.D., Perepelova T.I. A new perspective on evolution of the Baikal Rift, Geoscience frontiers, 2011, vol. 2, no. 3, pp. 349-365. https://doi.org/10.1016/j.gsf.2011.06.002

McCalpin J.P. Paleoseismology. 2nd ed. Amsterdam, Academic Press, Elsevier, 2009, 613 p.

McClymont A.F., Villamor P., Green A.G. Fault displacement accumulation and slip rate variability within the Taupo Rift (New Zealand) based on trench and 3-D ground penetrating radar data. Tectonics, 2009, vol. 28, p. TC4005. https://doi.org/10.1029/2008TC002334

Morris A.P., Ferrill D.A., McGinnis R.N. Mechanical stratigraphy and faulting in Cretaceous carbonates. AAPG Bull., 2009, vol. 93, pp. 1459-1470. https://doi.org/10.1306/04080909011

Tulokhonov A.K., Andreev S.G., Batoev V.B., Tsydenova O.V., Khlystov O.M. Natural microchronicle of recent events in the basin of Lake Baikal. Russian Geology and Geophysics. 2006, vol. 47, no. 9, pp. 1030-1034.

Iezzi F., Roberts G., Walker J.F., Papanikolaou I. Occurrence of partial and total coseismic ruptures of segmented normal fault system: Insight from the Central Apennines, Italy. J. Struct. Geol., 2019, vol. 126, pp. 83-99.https://doi.org/10.1016/j.jsg.2019.05.003

Rockwell T.K., Fletcher J.M., Teran O.J., Hernandez A.P., Mueller K.J., Salisbury J.B., Akciz S.O., Štěpančíková P. Reassessment of the 1892 Laguna Salada Earthquake: Fault Kinematics and Rupture Patterns. Bull. Seismol. Soc. Am., 2015, vol. 105, no. 6, pp. 1-9. https://doi.org/10.1785/0120140274

Roche V., Homberg C., Rocher M. Architecture and growth of normal faultzones in multilayer systems: a 3D field analysis in the South-Eastern Basin, France. J. Struct. Geol., 2012, vol. 37, pp. 19-35. https://doi.org/10.1016/j.jsg.2012.02.005

Vologina E.G., Kalugin I.A., Osukhovskaya Yu.N., Sturm M., Ignatova N.V., Radziminovich Ya.B., Dar’in A.V., Kuz’min M.I. Sedimentation in Proval Bay (Lake Baikal) after earthquake-induced subsidence of part of the Selenga River delta. Russian Geology and Geophysics, 2010, vol. 51, no. 12, pp. 1275-1284.

Wilkinson M., Roberts G.P., McCaffrey K., Cowie P., Faure J.P. Walker, Papanikolaou I., Phillips R.J., Michettii A.M., Vottory E., Gregory L., Wedmore L., Watson Z.K. Slip distribution on active normal faults measured from LiDAR and field mapping of geomorphic offset: an example from L’Aquila, Italy, and implications for modelling seismic moment release. Geomorphology, 2015, vol. 237, pр. 130-141. https://doi.org/10.1016/j.geomorph.2014.04.026

Homberg C., Schnyder J., Roche V., Leonardi V., Benzaggagh M. The brittle and ductile components of displacement along fault zones. Geol. Soc. Lond., Special Publications, 2017, vol. 439, pр. 395-412. https://doi.org/10.1144/SP439.21"

Shchetnikov A.A., Radziminovich Ya.B., Vologina E.G., Ufimtsev G.F. The formation of Proval Bay as an episode in the development of the Baikal rift basin: A case study. Geomorphology, 2012, vol. 177-178. pp. 1-16. http://dx.doi.org/10.1016/j.geomorph.2012.07.023


Full text (russian)