«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2020. Vol. 34

Some Results of Digital (in situ) Monitoring of Atmospheric Pollution with Gaseous Impurities in the Central Ecological Zone of South Baikal

Author(s)
T. V. Khodzher, V. A. Obolkin, E. V. Molozhnikova, M. Yu. Shikhovtsev
Abstract

The article presents the results of continuous automatic monitoring of atmospheric transport of pollutants in the source area of the Angara river (South Baikal) at the “Listvyanka” atmospheric monitoring station in 2019-2020. The temporal variability of the concentrations of oxides of sulfur, nitrogen, and mercury in the atmosphere of the сentral ecological zone of the lake Baikal is analyzed with high resolution from minutes to days. The use of automatic high-resolution gas analyzers for atmospheric impurities and meteorological parameters allows real-time monitoring of the flow of atmospheric pollution into the сentral ecological zone of South Baikal. Depending on the meteorological and synoptic conditions, observations demonstrate a high variability in the concentrations of anthropogenic impurities in the atmosphere over South Baikal. It is shown that the most severe atmospheric pollution occurs during the transfer of air masses from the north-northwest in winter. When transported from the South Baikal, atmospheric pollution is minimal. The temporal variability of the concentrations of the studied impurities occurs synchronously, which indicates their common source of origin – the combustion of fossil fuel. The highest time fluctuations are determined for the concentrations of sulfur and nitrogen oxides, the fluctuations in mercury concentrations are less significant. The average (median) and maximum (one-time) concentrations of sulfur oxides at “Listvyanka” station are given, depending on the prevailing wind directions. Direct trajectories of air mass transfer from the source cities of the Irkutsk region (Irkutsk, Angarsk, Shelekhov) are presented. At the time of the increase in the concentration of gas impurities at the “Listvyanka” station, pollution was transferred from the industrial complexes of the Baikal region. In the conclusion of the article, it is concluded that there are two main mechanisms of atmospheric pollution in the central ecological zone of Lake Baikal: direct transfer of individual weakly scattered plumes of separate regional thermal power plants with jet air currents at the upper boundary of the night boundary layers of the atmosphere (from 200 to 500 m above ground level); large-scale northwestern transport of mixed emissions from many regional and remote sources under the influence of synoptic-scale processes. Small settlements located on the coast, due to small volumes of emissions, do not make a significant contribution to the pollution of the lake's atmosphere. The work was supported by the Ministry of Science and Higher Education of the Russian Federation (grant No. 075-15-2020-787 for implementation of large scientific project «Fundamentals, methods and technologies for digital monitoring and forecasting of the environmental situation on the Baikal natural territory».

About the Authors

Khodzher Tamara Victorovna, Doctor of Sciences (Geography), Professor, Head of Laboratory of Hydrochemistry and Atmosphere Chemistry, Limnological Institute SB RAS, 3, Ulan-Batorskaya st., Irkutsk, 664003, Russian Federation, e-mail: khodzher@lin.irk.ru 

Obolkin Vladimir Arcadievich, Candidate of Sciences (Geography), Senior Research Scientist, Limnological Institute SB RAS, 3, Ulan-Batorskaya st., Irkutsk, 664003, Russian Federation, e-mail: obolkin@lin.irk.ru 

Molozhnikova Yelena Vladimirovna, Candidate of Sciences (Technical), Senior Research Scientist, Limnological Institute SB RAS, 3, Ulan-Batorskaya st., Irkutsk, 664003, Russian Federation, e-mail: yelena@lin.irk.ru 

Shikhovtsev Maxim Yurievich, Engineer, Limnological Institute SB RAS, 3, Ulan-Batorskaya st., Irkutsk, 664003, Russian Federation, e-mail: max97Irk@lin.irk.ru

For citation

Khodzher T.V., Obolkin V.A., Molozhnikova E.V., Shikhovtsev M.Yu. Some Results of Digital (in situ) Monitoring of Atmospheric Pollution with Gaseous Impurities in the Central Ecological Zone of South Baikal. The Bulletin of Irkutsk State University. Series Earth Sciences, 2020, vol. 34, pp. 141-155. https://doi.org/10.26516/2073-3402.2020.34.141 (in Russian)

Keywords
atmospheric monitoring, sulfur oxides, nitrogen oxides, gaseous mercury
UDC
551.588.74 (571.5)
DOI
https://doi.org/10.26516/2073-3402.2020.34.141
References

Gosudarstvennyi doklad “O sostoyanii i ob okhrane okruzhayushchei sredy Irkutskoi oblasti v 2019 godu”. [State Reports “On State and Protection of the Irkutsk Region Environment”]. Irkutsk, Megaprint Publ., 2020, 314 p. (in Russian) 

Ermakov V.V. Biogennaya migraciya i detoksikaciya rtuti [Biogenic migration and detoxification of mercury]. Moscow, GEO-HI RAS Publ., 2010, 477 p. (in Russian)

Obolkin V.A., Potemkin V.L., Makukhin V.L., Chipanina E.V., Marinayte I.I. Osobennosti prostranstvennogo raspredeleniya dioksida sery v Pribaikalie po dannym marshrutnykh izmerenii i chislennykh eksperimentov [Features of the spatial distribution of sulfur dioxide in the Baikal region according to route measurements and numerical experiments]. Meteorology and Hydrology, 2014, no. 12, pp. 35-41. (in Russian)

Obolkin V.A., Shamansky Yu.V., Khodzher T.V., Falits A.V. Mezomasshtabnye protsessy perenosa atmosfernykh zagryaznenii v raione Yuzhnogo Baikala [Mesoscale processes of atmospheric pollution transfer in the area of South Baikal]. Oceanological research, 2019, vol. 47, no. 3, pp. 104-113. https://doi.org/10.29006/1564-2291.JOR-2019.47 (in Russian)

Potemkin V.L., Latysheva I.V., Makukhin V.L., Potemkina T.G., Osobennosti vertikalnogo raspredeleniya aerozolei i gazovykh primesei v regione oz. Baikal [Peculiarities of Vertical Distribution of Aerosols and Gas Impurities in the Lake Baikal Region]. Izvestia ISU. Series Earth Sciences [The Bulletin of Irkutsk State University. Series Earth Sciences], 2019, vol. 27, pp. 111-121. https://doi.org/10.26516/2073-3402.2019.27.111 (in Russian)

Saneev B.G., Ivanova I.Yu., Maisyuk E.P., Tuguzova T.F., Ivanov R.A. Energeticheskaya infrastruktura tsentralnoi ekologicheskoi zony: vozdeistvie na prirodnuyu sredu i puti ego snizheniya [The power generation infrastructure in the central ecological zone of the Baikal natural territory: the environmental impact and ways to mitigate it]. Geography and natural resources, 2016, no. 5, pp. 218-224. (in Russian)

Reid J., Koppmann R., Eck T., Eleuterio D. A review of biomass burning emissions. Part 2: Intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics, 2005, vol. 5, pp. 799-825. https://doi.org/10.5194/acp-5-799-2005

Grennfelt P., Engleryd A., Forsius M., Hov Ø., Rodhe H., Cowling E. Acid rain and air pollution: 50 years of progress in environmental science and policy. Ambio, 2020, vol. 49, pp. 849-864. https://doi.org/10.1007/s13280-019-01244-4 

Semenov M.Yu., Khodzher T.V., Obolkin V.A., Domysheva V.M., Golobokova L.P., Kobeleva N.A., Netsvetaeva O.G., Potemkin V.L., Van Grieken R., Fukuzaki N. Assessing the acidification risk in the lake Baikal region. Chemistry and Ecology, 2006, vol. 22, no. 1, pp. 1-11. https://doi.org/10.1080/02757540500456955

Ionel I., Makra L., Csépe Z., Tusnády G., Cercelaru C., Ioan Ungureanu C. Assessment of relationship between meteorological elements and air pollutants load in an urban environment. Journal of Environmental Protection and Ecology, 2018, no. 4, pp. 1462-1471. 

Fu X.W., Dong Z.Q., Feng X., Yin R.S., Wang J.X., Yang Z.R., Zhang H. Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China. Atmospheric Chemistry and Physics, 2010, no. 10, pp. 2425-2437. https://doi.org/10.5194/acp-10-2425-2010

Karagulian F., Belis C.A., Dora C., Prüss-Ustün A.M., Bonjour S., Adair-Rohani H., Amann M. Contributions to cities ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, 2015, vol. 120, pp. 475-483. https://doi.org/10.1016/j.atmosenv.2015.08.087

Draxler R.R., Hess G.D., Description of the HYSPLIT – 4 modeling system. Silver Springs, MD Publ., 1997, 522 p.

Fiedler V., Nau R., Ludmann S., Arnold F., Schlager H., Stohl A. East Asian SO2 pollution plume over Europe – Part 1: Airborne trace gas measurements and source identification by particle dispersion model simulations. Atmospheric Chemistry and Physics, 2009, vol. 9. pp. 4717-4728. https://doi.org/10.5194/acp-9-4717-2009

Obolkin V.A., Khodzher T.V., Sorokovikova L.M., Tomberg I.V., Netsvetaeva O.G., Golobokova L.P. Effect of long-range transport of sulphur and nitrogen oxides from large coal power plants on acidification of river waters in the Baikal region, East Siberia. International Journal of Environmental Studies, 2016, vol. 73, no. 3, pp. 452-461. https://doi.org/10.1080/00207233.2016.1165481

Rusanescu C., Jinescu C., Rusanescu M., Begea M., Ghermec O. Evaluation of Air Pollution by NO2, SO2, PM10 in Bucharest. Revista de Chimie, 2018, vol. 69, no. 1, pp. 105-111. https://doi.org/10.37358/RC.18.1.6053 

Obolkin V.A., Potemkin V.L., Makukhin V.L., Khodzher T.V., Chipanina E.V. Long-Range Transport of Plumes of Atmospheric Emissions from Regional Coal Power Plants to the South Baikal Water Basin. Atmospheric and Oceanic Optics, 2017, vol. 30, no. 4, pp. 360-365. https://doi.org/10.1134/S1024856017040078

Lozovik P.A. Tolerance of water objects to acidification depending on their specific drainage areas – a case study of lakes and rivers in the basin of the Shuya River (Onezhskaya) water. Water resources, 2006, vol. 13(22), pp. 188-194.

Miller J.D., Anderson H.A., Harriman R. The consequences of liming a highly acidified catchment in central Scotland. Water Air Soil Pollution, 1995, vol. 85, no. 2, pp. 1015-1020.

Moiseenko T.I. The determination of the critical loads of acid deposition for surface waters. Water resources, 2002, vol. 3, pp. 322-328.

Sorokovikova L.M., Netsvetaeva O.G., Tomberg I.V., Molozhnikova Y.V. Monitoring of the snow cover chemical composition and its role in the acidification of the southern Baikal tributaries. Proceedings of SPIE 11560, 26th International Symposium on Atmospheric and Ocean Optics, “Atmospheric Physics”. Moscow, 2020. https://doi.org/10.1117/12.2574786

Kravtsova L.S., Izhboldina L.A., Khanaev I.V., Pomazkina G.V., Rodionova E.V., Domysheva V.M., Sakirko M.V., Tomberg I.V., Kostornova T.Ya., Kravchenko O.S., Kupchinsky A.B. Nearshore benthic blooms of filamentous green algae in Lake Baikal. JGreat Lakes Res., 2004, vol. 40, pp. 441-448. https://doi.org/10.1016/j.jglr.2014.02.019

Anenberg S.C., Belova A., Brandt J., Fann N., Greco S., Guttikunda S., Heroux M.E., Hurley F., Krzyzanowski M., Medina S., Miller B., Pandey K., Roos J., Van Dingenen R. Survey of Ambient Air Pollution Health Risk Assessment Tools. Risk Analysis, 2016, vol. 36, no. 9, pp. 1718-1736. https://doi.org/10.1111/risa.12540

Urbanski S.P., Hao W.M., Baker S. Chemical Composition of Wildland Fire Emissions. Developments in Environmental Sciencem, 2009, vol. 8, pp. 79-107. https://doi.org/10.1016/S1474-8177(08)00004-1.

Brushlinsky N., Ahrens M., Sokolov S., Wagner P. World Fire Statistics: Report. Available at: https://ctif.org/sites/default/files/2020-06/CTIF_Report25.pdf (date of access: 01.11.2020).

Yue X.L., Gao Q.X. Contributions of natural systems and human activity to greenhouse gasemissions. Advances in Climate Change Research, 2018, vol. 9, no 4, pp. 243-252. https://doi.org/10.1016/j.accre.2018.12.003


Full text (russian)