«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2020. Vol. 33

Current Trends in Annual Distribution River Flow of the Ural River Basin

Author(s)
Zh. T. Sivokhip, V. M. Pavleichik
Abstract

The results of the analysis of long-term regional trends of the intra-annual distribution of river flow in the river Ural are presented. A database on the discharge of 9 rivers has been compiled, including information on the monthly average, maximum and minimum flow rates. The duration of the data series is 45–78 years; the maximum number of observations reaches 91 years for the Ural River (Orenburg). To identify the dynamics of seasonal runoff, standard methods of statistical analysis and classical methods adopted in hydrology (supply curves, differential-integral curves, etc.) were used. The long-term dynamics of the intra-annual distribution of river runoff is considered taking into account phases of different water content. It was established that the water regime of the rivers of the studied basin is characterized by a stable tendency to reduce the proportion of spring runoff and increase the proportion of low-flow runoff, especially in winter. It was revealed that despite the presence of large artificial reservoirs on the rivers of the studied basin (including the Iriklinsk reservoir of long-term regulation), the weather-climatic factor in the formation of river flow and the transformation of intra-annual flow remains the leading one. The increase in the share of winter runoff is due to an increase in the frequency of positive winter anomalies, the values and duration of winter thaws. The results of the study confirm a significant transformation of the annual flow of the rivers of the river basin. Ural, similar for other rivers in the European territory of Russia. Despite the commonality of the revealed trends, the extremely irregular long-term and intra-annual flow dynamics remain characteristic of the rivers of the basin under consideration, a specific feature of the rivers of the Kazakhstan type of water regime. These trends are most clearly identified for rivers whose catchments are in arid conditions of runoff formation (Ilek, Or, Kumak rivers, etc.), less clearly for the main river (Urals). At the same time, under favorable conditions for runoff formation (forest and forest-steppe lowlands of the Southern Urals, which perform a barrier-cyclone function), there is an almost complete absence of intra-annual transformations for the entire period under consideration. This applies to river basins – the right tributaries of the river Ural (r. Sakmara, Big Ik, etc.). The results obtained indicate an increase in the risks of problems in the use of water resources of the steppe regions, which requires increasing the efficiency of water use in all sectors of the economy.

About the Authors

Sivokhip Zhanna Tarasovna, Candidate of Sciences (Geography), Institute of the Steppe UB RAS, 11, Pionerskaya st., Orenburg, 460000, Russian Federation, e-mail: sivohip@mail.ru 

Pavleichik Vladimir Mihaylovich, Candidate of Sciences (Geography), Institute of the Steppe UB RAS, 11, Pionerskaya st., Orenburg, 460000, Russian Federation, e-mail: pavleychik@rambler.ru

For citation

Sivokhip Zh.T., Pavleichik V.M. Current Trends in Annual Distribution River Flow of the Ural River Basin. The Bulletin of Irkutsk State University. Series Earth Sciences, 2020, vol. 33, pp. 112-123. https://doi.org/10.26516/2073-3402.2020.33.112 (in Russian)

Keywords
river runoff, water regime, steppe zone, runoff transformation
UDC
556.51.914.7 (470.56)
DOI
https://doi.org/10.26516/2073-3402.2020.33.112
References

Bolgov M.V., Korobkina E.A., Trubetskova M.D., Filimonova M.K., Filippova I.A. Sovremennyye izmeneniya minimal'nogo stoka na rekakh basseyna riv. Volga [Modern changes in the minimum flow on the rivers of the Volga river basin]. Meteorologiya i gidrologiya [Meteorology and hydrology], 2014, no. 3, pp. 75-85. (in Russian)

Georgiadi A.G., Koronkevich N.I., Kashutina E.A., Barabanova E.A. Prirodno-klimaticheskiye i antropogennyye izmeneniya stoka Volgi i Dona [Natural and climatic and anthropogenic changes in the flow of the Volga and the Don]. Fundamentalnaya i prikladnaya klimatologiya [Fundamental and Applied Climatology], 2016, no. 2, pp. 55-78. (in Russian)

Dmitriyeva V.A., Maskaykina S.V. Izmenchivost vodnogo rezhima v verkhov'yakh Donskogo basseyna v sovremennyy klimaticheskiy period [Variability of the water regime in the upper Don basin in the modern climatic period]. Vestnik Voronezh. Gos. univer. Seriya Geografiya. Geoekologiya [Bulletin of Voronezh State University. Series Geography. Geoecology], 2013, no. 1, pp. 17-21. (in Russian)

Alekseyevskiy N.A. (ed.) Zakonomernosti gidrologicheskikh protsessov [Regularities of hydrological processes]. Moscow, GEOS Publ., 2012, 736 p. (in Russian)

Komlev A.M. Zakonomernosti formirovaniya i metody rascheta rechnogo stoka [Regularities of formation and methods of calculation of runoff]. Perm, Perm Univ. Publ., 2002, 163p. (in Russian)

Magritskiy D.V., Evstigneyev V.M., Yumina N.M., Toropov P.A., Kenzhebayeva A.Zh., Yermakova G.S. Izmeneniya stoka v basseyne r.Ural [Changes in runoff in the Ural basin]. Vestnik Moskovskogo universiteta. Ser.5. Geografiya. [Bulletin of Moscow University. Ser. 5. Geography]. 2018. no. 1. pp. 90-101. (in Russian)

Ovcharova E.E. (ed.) Praktikum po gidrologii, gidrometrii i regulirovaniyu stoka [Workshop on hydrology, hydrometry and flow regulation]. Moscow, Agropromizdat Publ., 1988, 224 p. (in Russian)

Savichev O.G., Reshetko M.V., Moiseeva Yu.A. Sposob rekonstruktsii zonalnogo vodotoka v Zapadnoy Sibiri v golotsene [Method of reconstruction of zonal water flow in Western Siberia in the Holocene]. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzheneriya georesursov [News of Tomsk Polytechnic University. Engineering of georesources], 2016, vol. 327, no. 5, pp. 87-96. (in Russian)

Shiklomanov I.A., Georgiyevskiy V.Yu., Babkin V.I., Balonishnikova Zh.A. Problemy formirovaniya i otsenki izmeneniy vodnykh resursov i vodoobespechennosti Rossii [Problems of formation and assessment of changes in water resources and water supply in Russia]. Meteorologiya i gidrologiya [Meteorology and Hydrology], 2010, no. 1, pp. 23-33. (in Russian)

Alekseevskii N.I., Lebedeva M.Yu., Sokolovskii D.K. Sources of alimentation and variability of their contribution to river runoff formation in European Russia. Water Resources. 2007, vol, 34. no. 1, pp. 1-13. https://doi.org/10.1134/S0097807807010010

Brauman K.A., Richter B.D., Postel S., Malsy M., Florke M. Water depletion: an improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Elem. Sci. Anth., 2016, no. 4, pp. 000083.

Dzhamalov R.G., Frolova N.L., Telegina E.A. Winter runoff variations in European Russia. Water Resources, 2015, vol. 42, no. 6, pp. 758-765. https://doi.org/10.1134/S0097807815060032

Kunkel K.E., Pielke R.A., Changon S.A. Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: a review. Bull. Am. Meteorol. Soc., 1999, pp. 1077-1098. 

Lopez-Bustins J.A., Pascual D., Pla E., Retana J. Future variability of droughts in three Mediterranean catcments. Nat. Hazards, 2013, pp. 1405-1421. 

Roderick M.L, Farquhar G.D. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res., 2011, no. 47, pp. 1-11. 

Schneider C., Laize C.L.R., Acreman C., Florke M. How will climate change modify river flow regimes in Europe? Hydrol. Earth Syst. Sci., 2013, vol. 17, no. 1, pp. 325-339.

Sivokhip Zh.T., Pavleichik V.M., Chibilev A.A., Padalko Yu.A. Problems of dependable water use in the transboundary Ural River basin. Water Resources, 2017, vol. 44, no. 4, pp. 673-684. https://doi.org/10.7868/S0321059617040162

Zinoviev А.Т., Galakhov V.P., Kosheleva E.D., Lovtskaya O.V. Influence of global climate changes on hydrological regime of rivers in the South West Siberia. Eurasian journal of mathematical and computer applications, 2016, vol. 3, no. 1, pp. 47-54.


Full text (russian)