«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2019. Vol. 30

Geological Position, Geochemical and Sm-Nd-Isotopic Composition of Ophiolites of the Sayan-Tuva Forearc Zone

Author(s)
A. A. Mongush
Abstract

The ophiolites of the Sayano-Tuvan forearc zone are an integral part of the Early Caledonian system formed during the evolution of the Tuvan-Mongolian island arc of the Paleoasiatic ocean. This segment of the Early Caledonids contains the main structural elements of the island-arc system: the forearc, island-arc and back-arc zones. The forearc zone extends in a northeasterly direction for 550 km, has a width of about 300 km and includes early Caledonian structures in the adjacent territories of Western Sayan and Tuva. The Sayano-Tuvan forearc consists of sub-zones: a) front Dzebash, b) transition Levokhemchik and Kurtushiba, and c) back Khemchik-Tapsa. The ophiolites are represented in all subzones except Dzebash. In the frame of Kurtushiba ophiolites developed sedimentary deposits V-Є1 Chingin strata, Khemchik ophiolites – sedimentary deposits V-Є1 Aldynbulak strata. Both strata were accumulated in the conditions of forearc basin, Chingin sediments lie in the form of tectonic plates, they are more finely fragmented compared to Aldinbulak, which are usually represented in the olistostrome, which lies in the wedge-shaped outlets of the Khemchik-Systygchem collision deflection. The geological position of the ophiolites of the Kurtushiba ridge of the Western Sayan and the Khemchik river basin in Western Tuva indicates that they are a component of the forearc Sayan-Tuva zone of the Tannuola-Khamsara island-arc system. Features of the geological structure of these ophiolites is the presence of at least two generations of dikes of different orientation, indicating the processes of scattered spreading. For us rare element compositionof the studied ophiolites correspond, on the one hand, the of island arcs tholeiites, with the other N-MORB, but it is discriminatory on the chart Y – La/Nb of points of their compositions tend to the field of forearc platform basalts. Geological and geochemical data indicate the formation of Kurtushiba and Chemchik ophiolites in areas of scattered spreading in the suprasubduction zone. At the same time, in Kurtushiba ophiolites the dyke complex which structure is characteristic only for N-MORB is fixed. The results of our studies suggest that Kurtushiba ophiolites were formed in paleogeodynamic conditions of the origin of subduction and the beginning of the formation of primitive island arcs on the oceanic lithosphere. Island-arc processes during the formation of ophiolites probably was a partial replacement of primary magmatic oceanic crust supra-subduction melts. Khemchik ophiolites (Shatsky massif), including dikes of different orientations, were also formed under conditions of scattered spreading at the stage of subduction zone origin.

About the Authors

Mongush Andrey Alexandrovich, Candidate of Science (Geology and Minerology), Leading Researcher, Laboratory of Geodynamics, Magmatism and Ore Formation, Tuvinian Institute for Exploration of Natural Resources SB RAS, 117a, Internatsionalnaya st., Kyzyl, 667007, Russian Federation, tel.: 8(39422)6-62-18, e-mail: amongush@inbox.ru

For citation

Mongush A.A. Geological Position, Geochemical and Sm-Nd-Isotopic Composition of Ophiolites of the Sayan-Tuva Forearc Zone. The Bulletin of Irkutsk State University. Series Earth Sciences, 2019, vol. 30, pp. 56-75. https://doi.org/10.26516/2073-3402.2019.30.56 (in Russian)

Keywords
ophiolites, geodynamics, structure, forearc
UDC
551.248.1:552.11(571.52)
DOI
https://doi.org/10.26516/2073-3402.2019.30.56
References

Berzin N.A., Kungurtsev L.V. Geodinamicheskaya interpretatsiya geologicheskikh kompleksov Altae-Sayanskoi oblasti [Geodynamic interpretation of Altai-Sayan geological complexes]. Geologiya i Geofizika, 1996, vol. 37, no. 1, pp. 56-73. (in Russian). 

Perfilev A.S., Simonov V.A., Batanova V.G., Kurenkov S.A., Kheraskov N.N. Geologicheskoe stroenie Shatskogo ofiolitovogo massiva [Geological structure of the Shatsky ophiolite massif]. Complex geological studies of Sangilen (South-Eastern Tuva). Novosibirsk, 1987, pp. 97-107. (in Russian)

Goncharenko A.I., Chernyshev A.I., Voznaya A.A. Ofiolity Zapadnoi Tuvy (stroenie, sostav, petrostrukturnaya evolyutsiya) [Ophiolites of Western Tuva (structure, composition, petrostructural evolution)]. Tomsk, TGU Publ., 1994, 125 p. 

Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii masshtaba 1:200 000. Izd. 2-e. Seriya Zapadno-Sayanskaya. List N-46-XXIX (Verkhnii Amyl). Obijyasnitelnaya zapiska [State geological map of the Russian Federation scale 1: 200 000. Ed. 2nd Series West-Sayan. Sheet N-46-XXIX (Upper Amyl). Explanatory note]. Saint-Petersburg, VSEGEI Publ., 2003, 135 p. 

Bloomer S.H., Taylor B., MacLeod C.J., Stern R.J., Fryer P., Hawkins J.W., Johnson L. Early Arc volcanism and the Ophiolite problem: A perspective from drilling in the Western Pacific. Taylor B., Natland J, (EDS.). Active Margins and Marginal Basins of the Western Pacific.Washington D. C., American Geophysical Union, 1995, pp. 67-96. 

Mongush A.A., Terleev A.A., Tokarev D.A., Druzhkova E.K. Granitoidy i izvestnyaki iz konglomeratov preddugovoj zony Tannuolsko-Hamsarinskoj ostrovoduzhnoj sistemy (Tuva): geohimiya, paleontologiya, korrelyaciya [Granitoids and limestones from the conglomerates of the pre-arc zone of the Tannuolskohamsarin island arc system (Tuva): Geochemistry, paleontology, correlation]. Vestnik Tomk State Univ. 2013, no. 372, pp. 184-192.

Dobretsov N.L., Ponomareva L.G. Ofiolity i glaukofanovye slantsy Zapadnogo Saiana i Kurtushibinskogo poiasa [Ophiolites and Glaucophane Schists of the Western Sayan and Kurtushubin Belt]. In: Petrology and Metamorphism of Ancient Ophiolites with Reference to the Polar Urals and Western Sayan. Novosibirsk, Science, 1977, pp. 128-156 (in Russian).

Kuzmichev А.B., Sklyarov E.V. (ed.). Tektonicheskaya istoriya Tuvino-Mongol'skogo massiva: rannebaikal'skii, pozdnebaikalskii i rannekaledonskii etapy [Tectonic history of the Tuva-Mongolian Massif: Early Baikalian, Late Bakalian and Early Caledonian stages]. Moscow, PROBEL-2000 Publ., 2004, 192 p. (in Russian). 

Kurenkov S.A., Didenko A.N., Simonov V.A. Geodinamika paleospredinga [Geodynamics of paleospreading]. Moscow, GEOS Publ., 2002, 294 p. (in Russian). 

Lyashenko O. V. Sravnitelnaya tektonika Kurtushibinskogo i Vostochno-Sayanskogo ofiolitovykh poyasov (Altae-Sayanskaya skladchataya oblast) [Comparative tectonics Kurtushiba and East Sayan ophiolite belts (Altai-Sayan folded area)]. PhD Dissertation. Moscow, Geological Institute Publ., 1984. (in Russian). 

Mongush A. A. Bazatovye kompleksy Sayano-Tuvinskoi preddugovoi zony: geologicheskoe polozhenie, geokhimiya, geodinamika [Basalt complexes of the Sayano-Tuva forearc zone: geological position, geochemistry, geodynamics]. Lebedev V.I. (ed.) State and development of natural resources of Tuva and adjacent regions of Central Asia. Ecological and economic problems of nature management: Issue 14. Kyzyl, TuvIKOPR SO RAN Publ., 2016. pp. 74-94. (in Russian)

Mongush A.A. Ofiolity Zapadnogo Sayana i Zapadnoi Tuvy – avtokhtonnye kompleksy Sayano-Tuvinskoi preddugovoi zony V-Є1 ostrovnoi dugi Paleoaziatskogo okeana [The ophiolites of the Western Sayan and Western Tuva – autochthonous complexes of the Sayan-Tuva forearc of the V-Є1 island arc of the Paleoasian ocean]. Geodynamic evolution of the lithosphere of the Central Asian Mobile Belt (from ocean to continent). Irkutsk, Institute of the Earth’s Crust SB RAS Publ., 2017, vol. 15, pp. 194-196 (in Russian). 

Mongush A.A., Lebedev V.I., Travin A.V., Yarmolyuk V.V. Ophiolites of Western Tyva as Fragments of a Late Vendian Island Arc of the Paleoasian Ocean. Doklady Earth Sciences, 2011, vol. 438, part 2, pp. 866-872. https://doi.org/10.1134/S1028334X11060328

Volkova N.I., Stupakov S. I., Babin G.A., Rudnev S.N., Mongush A.A. Mobility of trace elements during subduction metamorphism as exemplified by the blueschists of the Kurtushibinsky range, Western Sayan. Geochemistry International, 2009, vol. 7, no. 4, pp. 380-392. https://doi.org/10.1134/S0016702909040053 

Shcherbakov S.A. Ofiolity Zapadnoi Tuvy i ikh strukturnaya pozitsiya [Ophiolites of Western Tuva and their structural position]. Geotektonika, 1991, no. 4, pp. 88-101. (in Russian)

Le Bas M.J., Le Maitre R.W., Streckeisen A., Zanettin B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 1986, vol. 27, no. 3, pp. 745-750. 

Albanian ophiolites. I - Magmatic and metamorphic processes associated with the initiation of a subduction / J. Bebien, A. Dimo-Lahitte, P. Vergely, D. Insergueix-Filippi, L. Dupeyrat // Ophioliti, 2000. V. 25. N 1. P. 39–45.

Thompson R.N., Morrison M.A., Hendry G.L., Parry S.J. An assessment of the relative roles of the crust and mantle in magma genesis, an elemental approach. Philp. Trans Royal Soc. London, 1984, vol. 310, pp. 549-590. 

Condie K.C. High field strength element rations in Archean basalds: a window to evolving sources of mantle plumes? Lithos, 2005, vol. 79, pp. 491-504. https://doi.org/10.1016/j.lithos.2004.09.014

DePaolo J.D. Neodymium Isotope Geochemistry. An Introduction. Minerals and Rocks, vol. 20. New York Springer-Verlag, 1988, XII, 187 p. 

Dilek Y, Furnes H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, March/April, 2011, vol. 123, no. 3/4, pp. 387-411. 

Maffione M., Thieulot C., van Hinsbergen D.J.J., Morris A., Plumper O., Spakman W. Dynamics of intraoceanic subduction initiation: 1. Oceanic detachment fault inversion and the formation of supra-subduction zone ophiolites. Geochemistry, Geophysics, Geosystems, 2015, vol. 16, no. 6, pp. 1753-1770. 

Bloomer S.H., Taylor B., MacLeod C.J., Stern R.J., Fryer P., Hawkins J.W., Johnson L.; By eds. Taylor B., Natland J. Early Arc volcanism and the Ophiolite problem: A perspective from drilling in the Western Pacific. Active Margins and Marginal Basins of the Western Pacific. Washington D. C., American Geophysical Union, 1995, pp. 67-96. 

Ishizuka O., Kimura J.I., Li Y.-B., Stern R.J., Reagan M.K., Taylor R.N., Ohara Y., Bloomer S.H., Ishii T., Hargrove III U.S., Haraguchi S. Early stages in the volcanism: new age, chemical and isotopic constraints. Earth Planet. Sci. Lett., 2006, vol. 250, pp. 385-401. 

Reagan M.K., Ishizuka O, Stern R.J., Kelley K.A., Ohara Y., Blichert-Toft J., Bloomer S.H., Cash J., Fryer P., Hanan B. B., Hickey-Vargas R., Ishii T., Kimura J-I., Peate D.W., Rowe M.C., Woods M. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochemistry Geophysics Geosystems, 2010, vol. 11, no. 3. Q03X12. https://doi.org/10.1029/2009GC002871

Miyashiro A. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 1974, vol. 274, pp. 321-355. 

Pearce J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 2008, vol. 100, p. 14-48. 

Pearce J.A., Lippard S.J. & Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites. Kokelaar B.P. and Howells M. F. (eds.). Marginal Basin Geology, Geol. Soc. London, 1984, Spec. Publ. 16, pp. 77-94. 

Pearce J.A., Robinson P.T. The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Research, 2010, vol. 18, pp. 60-81, https://doi.org/10.1016/j.gr.2009.12.003

Nokleberg Warren J., Naumova Vera V., Kuzmin Mikhail I., and Bounaeva Tatiana V. (eds.). Preliminary publications book 1 from project on mineral resources, metallogenesis, and tectonics of Northeast Asia. Open-File Report 99-165. U. S. Department of the Interrior, U. S. Geological Survey, 1999. (CD). 

Şengör A.M.C., Natal’in B.A., and Burtman V.S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 1993, vol. 364, p. 299-307. 

Shervais, J. W. Birth, death, and resurrection: The life cycle of suprasubduction zone ophiolites. Geochem. Geophys. Geosyst., 2001, vol. 2, no. 2000GC000080. 

Silver P.G., Behn M.D. Intermittent Plate Tectonics? Science, 2008, vol. 319, no. 85, pp. 85-87. https://doi.org/10.1126/science.1148397

Steinmann G. Geologische Beobachtungen in den Alpen. II. Die Schardtsche Uberfaltungstheorie und die geologische Bedeutung der Tiefseeabasatze und der ophiolithischen Massengesteine. Berichte Naturforsch. Ges. Freiburg, 1905, vol. 16, pp. 44–65. 

Stern R.J., Bloomer S.H. Subduction zone infancy; examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs. Geol. Soc. Am. Bull., 1992, vol. 104, pp. 1621-1636. 

Ishizuka O., Tani K., Reagan M.K., Kanayama K., Umino S., Harigane Y., Sakamoto I., Miyajima Y., Yuasa M., Dunkley D.J. The timescales of subduction initiation and subsequent evolution of an oceanic island arc. Earth and Planetary Science Letters, 2011, vol. 306, pp. 229–240.

Stern R.J., Reagan M., Ishizuka O., Ohara Y. and Whattam S. To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites. Lithosphere, 2012, May 16. https://doi.org/10.1130/L183.1

Wakabayashi J., Ghatak A., and Basu A. R. Suprasubduction-zone ophiolite generation, emplacement, and initiation of subduction: A perspective from geochemistry, metamorphism, geochronology, and regional geology. Geological Society of America Bulletin, 2010, Vol. 122, no. 9-10, pp. 1548-1568, https://doi.org/10.1130/B30017.1

Whattam S.A., Stern R.J. The ‘subduction initiation rule’: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contrib Mineral Petrol, 2011, vol. 162, pp. 1031-1045. 


Full text (russian)