«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2019. Vol. 28

Methods for Determining the Mineral Composition of Baikal Bottom Sediments and Calculating Their Thermodynamic Properties as a Criterion for Paleoclimatic Changes

Author(s)
A. V. Oshchepkova, V. A. Bychinsky, K. V. Chudnenko, S. A. Sasim
Abstract

A detailed study of crystal-chemical properties of clay minerals is constrained by difficulties related to their complex structure and large number of isomorphic impurities. One way to solve this problem is physical-chemical modeling. This paper presents the results of a study of the most common representatives of clay minerals – montmorillonites and illites. We used data of using melt-calorimetry method as a test to verify the accuracy of the method we are developed. Our method allows us to calculate the mineral composition and the thermodynamic properties. It describes complex natural clay minerals with the use of solid-solution models and determine the thermodynamic properties of these minerals by dual decisions using the method of free energy minimization implemented in a universal program complex “Selector”. An example of the calculation of the formulas and thermodynamic properties of illites from Lake Baikal sediments is given. The intervals of precipitation formed in warm and cold climatic periods are studied. It has been found that illites of warm periods have a higher content of potassium, sodium, and calcium. The chemical features of the layered silicates accumulated in the bottom sediments make it possible to determine the prevailing weathering conditions in the catchment basin, since their composition significantly changes in warm and cold climatic episodes. The thermodynamic potentials of illites from warm periods are lower. Illites form in soils and are more stable during warm climatic periods. A similar approach can be successfully used for sedimentary rocks.

About the Authors

Oshchepkova Anastasia Vladimirovna, Junior Researcher, Institute of Geochemistry SB RAS, 1a, Favorsky st., Irkutsk, 664033, Russian Federation; Senior Lecturer, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, tel.: 8 (3952) 42-70-79, e-mail: oshepkova-anasta@mail.ru 

Bychinsky Valerii Alexeevich, Candidate of Sciences (Geology and Mineralogy), Senior Researcher, Vinogradov Institute of Geochemistry SB RAS, 1a, Favorsky st., Irkutsk, 664033, Russian Federation; Associate Professor, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, tel.: 8(3952)42-70-79, e-mail: val@igc.irk.ru 

Chudnenko Konstantin Vadimovich, Doctor of Sciences (Geology and Mineralogy), Head, Laboratory of Environmental Geochemistry and Physico-Chemical Modeling, Institute of Geochemistry SB RAS, 1a, Favorsky st., Irkutsk, 664033, Russian Federation, tel.: 8(3952)42-70-79, e-mail: chud@igc.irk.ru 

Sasim Sergey Alexandrovich, Candidate of Sciences (Geology and Mineralogy), Associate Professor, Head, Department of Mineral Resources, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, tel.: 8(3952)24-32-80, e-mail: sasimserg@mail.ru

For citation

Oshchepkova A.V., Bychinsky V.A., Chudnenko K.V., Sasim S.A. Methods for Determining the Mineral Composition of Baikal Bottom Sediments and Calculating Their Thermodynamic Properties as a Criterion for Paleoclimatic Changes. The Bulletin of Irkutsk State University. Series Earth Sciences, 2019, vol. 28, pp. 76-88. https://doi.org/10.26516/2073-3402.2019.28.76 (in Russian)

Keywords
thermodynamic potentials, stoichiometric formulas, clay minerals, Baikal sediments, paleoclimate
UDC
546.01:546.083 (571.5)
DOI
https://doi.org/10.26516/2073-3402.2019.28.76
References

Bezrukova E.V., Letunova P.P. Vysokorazreshayushchaya zapis' paleoklimatov Vostochnoi Sibiri dlya rannego i srednego pleistotsena po materialam palinologicheskogo issledovaniya baikal'skikh osadkov (glubokovodnaya skv. BDP-96-1) [High-resolution recording of paleoclimates of Eastern Siberia for the Early and Middle Pleistocene based on materials of the Baikal sediments palynological study (deep-water well BDP-96-1)]. Geologiya i geofizika [Russian Geology and Geophysics], 2001, vol. 42, no. 1-2, pp. 98-108. (in Russian)

Kuz'min M.I., Solotchina E.P., Vasilevskii A.N., Stolpovskaya A.N., Karabanov E.B., Geletii V.F., Bychinskii V.A., Anoshin G.N., Shul'zhenko S.G. Glinistye mineraly donnykh osadkov ozera Baikal kak indikator paleoklimata [Clay minerals of bottom sediments of Lake Baikal as an indicator of paleoclimate]. Geologiya i geofizika [Russian Geology and Geophysics]. 2000, vol. 41, no. 10, pp. 1347-1359. (in Russian)

Drits V.A., Kossovskaya A.G. Glinistye mineraly: smektity, smeshanosloinye obrazovaniya [Clay minerals: smectites, mixed-layer formations]. Moscow, Nauka Publ, 1990, 214 p. (in Russian)

Efremova S.V., Stafeev K.G. Petrokhimicheskie metody issledovaniya gornykh porod: Spravochnoe posobie [Petrochemical Methods of Rock Formation: A Handbook]. Moscow, Nedra Publ., 1985, 511 p. (in Russian)

Karpov I.K. Fiziko-khimicheskoe modelirovanie na EVM v geokhimii [Physico-chemical modeling on a computer in geochemistry]. Novosibirsk, Nauka Publ., 1981, 247 p. (in Russian)

Pal'chik N.A., Solotchina E.P., Gol'dberg E.L., Stolpovskaya V.N., Gorbarenko S.A. Kristallokhimiya glinistykh mineralov Okhotskogo morya kak indikator paleoklimata [Crystal chemistry of clay minerals of the Sea of Okhotsk as an indicator of paleoclimate]. Zhurnal neorganicheskoi khimii [Russ. Journal Inorganic Chemistry]. 2008, vol. 53, no. 6, pp. 938-946. (in Russian)

Krylov A.A., Shtain R., Ermakova L.A. Glinistye mineraly kak indikatory uslovii pozdnechetvertichnogo osadkonakopleniya v raione podnyatiya Mendeleeva, Ameraziiskii bassein Severnogo Ledovitogo okeana [Clay minerals as indicators of the conditions of Late Quaternary sedimentation in the area of the Mendeleev Rise, Amerasian basin of the Arctic Ocean] Litologiya i poleznye iskopaemye [Lithology and Mineral Resources]. 2013, no. 6, pp. 507-521. (in Russian)

Krupskaya V.V., Miroshnikov A.Yu., Dorzhieva O.V., Zakusin S.V.,Semenkov I.N., Usacheva A.A. Mineral'nyi sostav pochv i donnykh osadkov zalivov arkhipelaga Novaya Zemlya [Mineral composition of soils and bottom sediments of bays of the Novaya Zemlya archipelago]. Okeanologiya [Oceanology], 2017, vol. 57, no. 1, pp. 238-245. (in Russian)

Oshchepkova A.V., Kuz'min M.I., Bychinskii V.A., Solotchina E.P., Chudnenko K.V. Modeli tverdykh rastvorov dlya rascheta mineral'nogo sostava donnykh osadkov ozera Baikal: novyi podkhod k paleoklimaticheskim rekonstruktsiyam [Models of solid solutions for calculating the mineral composition of the bottom sediments of Lake Baikal: a new approach to paleoclimatic reconstructions]. Doklady Akademii nauk [Doklady Earth Sciences], 2015, vol. 461, no. 4, pp. 447-450. (in Russian)

Rozen O.M., Abbyasov A.A. Kolichestvennyi mineral'nyi sostav osadochnykh porod: raschet po petrokhimicheskim dannym, analiz dostovernosti rezul'tatov (komp'yuternaya programma MINLITH [Quantitative mineral composition of sedimentary rocks: calculation based on petrochemical data, analysis of the reliability of the results (computer program MINLITH)]. Litologiya i poleznye iskopaemye [Lithology and Mineral Resources], 2003, no. 3, pp. 299-312. (in Russian)

Solotchina E.P. Strukturnyi tipomorfizm glinistykh mineralov osadochnykh razrezov i kor [Structural typomorphism of clay minerals of sedimentary sections and cores]. Novosibirsk, Geo Publ, 2009, 234 p. (in Russian)

Ogorodova L.P., Kiseleva I.A., Mel'chakova L.V., Vigasina M.F., Krupskaya V.V. Termokhimicheskoe izuchenie prirodnogo montmorillonita [Thermochemical study of natural montmorillonite]. Geokhimiya [Geochemistry International], 2013, no. 6, pp. 541-551. (in Russian)

Kuz'min M.I., Bychinskii V.A., Kerber E.V., Oshchepkova A.V., Goreglyad A.V., Ivanov E.V. Khimicheskii sostav osadkov glubokovodnykh baikal'skikh skvazhin kak osnova rekonstruktsii izmenenii paleoklimata i okruzhayushchei sredy [Chemical composition of sediments of deep-water Baikal wells as the basis for reconstruction of changes in the paleoclimate and the environment]. Geologiya i geofizika [Russian Geology and Geophysics], 2014, vol. 55, no. 1, p. 3. (in Russian)

Chudnenko K.V. Termodinamicheskoe modelirovanie v geokhimii: teoriya, algoritmy, programmnoe obespechenie, prilozheniya [Thermodynamic modeling in geochemistry: theory, algorithms, software, applications]. Novosibirsk, Geo Publ., 2010, 287 p. (in Russian)

Berman R.G. Internally-Consistent Thermodynamic Data for Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 1988, vol. 29, pp. 445-552. 

Prokopenko A.A., Karabanov E.B., Williams D.F., Kuzmin M.I., Shackleton N.J., Crowhurst S.J., Peck J.A., Gvozdkov A.N., King J.W. Biogenic Silica record of the Lake Baikal response to climaticforsing during the Brunhes. Quaternaly Research, 2001, vol. 55, pp. 123-132.

Chaudhri A.R., Mahavir S. Clay Minerals as Climate Change Indicators – A Case Study. American Journal of Climate Change, 2012, vol. 1, pp. 231-239.

Shichi K., Kawamuro K., Takahara H., Hase Y., Maki T., N. Miyoshi. Climate and vegetation changes around Lake Baikal during the last 350,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, no. 248, pp. 357-375.

Ghergari L., Onac B.P. Late Quaternary Palaeoclimate Reconstruction Based on Clay Minerals Assemblage from Preluca Tiganului (Gutai Mountains, Romania). Studia UBB Geologia, 2001, vol. 46 (1), pp. 15-28.

Helgeson H.C. Thermodynamics of minerals, reactions, and aqueous solutions at high pressures and temperatures. American Journal of Science, 1985, vol. 285 (9), pp. 845-855.

Holmes A. Petrographic methods and calculations. London Murby and Co., 1923, 255 p.

Ransom B., Helgeson H.G. Compositional end members and thermodynamic components of illite and dioctahedral aluminous smectite solid solutions. Clays and Clay minerals, 1993, vol. 41, no. 5, pp. 537-550.

Reid R.C., Prausnitz J.M., Sherwood T.K. The properties of gases and liquids. N. Y., McGraw-Hill Book Company, 1977, 629 p.

Solotchina E.P., Prokopenko A.A., Vasilevsky A.N., Gavshin V.M., Kuzmin M.I., Williams D.F. Simulation of XRD patterns as an optimal technique for studying glacial and interglacial clay mineral associations in bottom sediments of Lake Baikal. Clay minerals, 2002, vol. 37, pp. 105-119.

Antipin V., Afonina T., Badalov O., Bezrukova E., Bukharov A., Bychinsky V., Dmitriev A.A., Dorofeeva R., Duchkov A., Esipko O., Fileva T., Gelety V., Golubev V., Goreglyad A., Gorokhov I., Gvozdkov A., Hase Y., Ioshida N., Ivanov E., Kalashnikova I., Kalmychkov G., Karabanov E., Kashik S., Kawai T., Kerber E., Khakhaev B., Khlystov O., Khursevich G., Khuzin M., King J., Konstantinov K., Kochukov V., Krainov M., Kravchinsky V., Kudryashov N., Kukhar L., Kuzmin M., Nakamura K., Nomura Sh., Oksenoid E., Peck J., Pevzner L., Prokopenko A., Romashov V., Sakai H., Sandimirov I., Sapozhnikov A., Seminsky K., Soshina N., Tanaka A., Tkachenko L., Ushakovskaya M., Williams D. The new BDP-98 600-m drill core from Lake Baikal: a key late Cenozoic sedimentary section in continental Asia. Quaternary International, 2001, vol. 80/81, pp. 19-36.

Gailhanou H., Blanc P., Rogez J., Mikaelian G., Kawaji H., Olives J., Amouric M., Denoyel R., Bourrelly S., Montouillout V., Vieillard P., Fialips C.I., Michau N., Gaucher E.C. Thermodynamic properties of illite, smectite and beidellite by calorimetric methods: Enthalpies of formation, heat capacities, entropies and Gibbs free energies of formation. Geochimica et Cosmochimica Actra, 2012, no. 89, pp. 279-301.

Thiry M. Paleoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth-Science Reviews, 2000, no. 49, pp. 201-221.

Wolery T.J., Jove-Colon C.F. Qualification of thermodynamic data for geochemical modeling of mineral–water interactions in dilute systems. Office of Scientific & Technical Information Technical Reports, 2004, 212 p.

Yokokawa H. Tables of Thermodynamic Functions for Inorganic Compounds. J. National Chemical Laboratory for Industry, 1988, vol. 83. pp. 27-121.


Full text (russian)