ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2019. Vol. 27

Moisture Content of the Troposphere Above the Observation Point Ust-Barguzin

M. G. Dembelov, M. E. Ovdin

The moisture content of the troposphere above the point of observation of Ust-Barguzin in the period from 2013 to 2017 is considered. To study the moisture content of the troposphere, the data of surface meteorological measurements as well as vertical atmospheric profiling carried out by radiosonde and satellite soundings of the NOAA polar-orbital system are used. Results of vertical profiling allow obtaining meteorological data at different altitude levels. The regression of the dependence of the values of the weighted «mean temperature” on the aqueous tension on the values of the surface air temperature for Ust-Barguzin according to soundings for 2013–2017 is revealed. The parameters of the total zenith tropospheric delay (ZTD) which is the sum of «dry» or hydrostatic (ZHD) and «wet» (ZWD) components are calculated. The values of ZWD determine the amount of integrated water vapor (IWV) and the amount of potentially precipitated water (PW) above the observation point. The possibility of obtaining initial data for creating new numerical models of zenith tropospheric delay and integrated precipitated water vapor for meteorological problems is considered.

About the Authors

Dembelov Mikhail Georgievich, Candidate of Science (Physics and Mathematics), Senior Research Scientist, Laboratory of Electromagnetic Diagnostics, Institute of Physical Materials Science SB RAS, 6, Sakhyanova st., Ulan-Ude, 670047, Russian Federation, tel.: (3012) 43-32-10, e-mail: mdembelov@mail.ru 

Ovdin Mikhail Evgenievich, Research Scientist, Laboratory of Electromagnetic Diagnostics, Institute of Physical Materials Science SB RAS, 6, Sakhyanova st., Ulan-Ude, 670047, Russian Federation, tel.: (3012) 43-3210; Director, Joint Directorate of Barguzin State Natural Biosphere Reserve and Transbaikal National Park, 71, Lenin st., Ust-Barguzin, 671623, Russian Federation, tel.: (30131) 91-5-75, e-mail: mikhovdin@mail.ru

For citation

Dembelov M.G., Ovdin M.E. Moisture Content of the Troposphere Above the Observation Point Ust-Barguzin. The Bulletin of Irkutsk State University. Series Earth Sciences, 2019, vol. 27, pp. 32–45. https://doi.org/10.26516/2073-3402.2019.27.32 (in Russian)

meteorological data, vertical sounding of the atmosphere, refractive index, tropospheric delay, moisture content

Antokhina O.Y., Antokhin P.N., Devyatova E.V., Martynova Y.V. Atmospheric blockings in Western Siberia. Part 2. Long-term variations in blocking frequency and their relation with climatic variability over Asia. Russian Meteorology and Hydrology, 2018, vol. 43, no. 3, pp. 143-151. https://doi.org/10.3103/S1068373918030020

Dembelov M.G., Bashkuev Y.B., Lukhnev A.V., Lukhneva O.F., San’kov V.A. Diagnostics of atmospheric water vapor content according to GPS measurements. Atmospheric and oceanic optics, 2015, vol. 28, no. 4, pp. 291-296. https://doi.org/10.1134/S1024856015040053

Kashkin V.B. Internal gravity waves in troposphere. Atmospheric and oceanic optics, 2014, vol. 27, no. 1, pp. 1-9. https://doi.org/10.1134/S1024856014010059

Kashkin V.B., Vladimirov V.M., Klykov A.O. Otsenka troposfernoy zaderzhki signalov globalnyh navigatsionnyh sputnikovyh system [Estimation of the tropospheric signals delay of global navigation satellite systems]. Uspehi sovremennoy redioelektroniki. [Successes of modern radio electronics], 2014, no. 5, pp. 37-42. (in Russian)

Marchenko O.Yu., Mordvinov V.I., Antokhin P.N. Issledovaniye dolgovremennoy izmenchivosti I usloviy formirovaniya atmosfernyh osadkov v basseyne reki Selenga [Study of long-term variability and conditions of precipitation formation in the Selenga river basin]. Optika atmosfery i okeana. [Atmospheric and oceanic optics], 2012, vol. 25, no. 12, pp. 1084-1090. (in Russian)

Khutorova O.G., Khutorov V.E., Teptin G.M. Mezhgodovaya izmenchivost prizemnogo I inegralnogo vlagosoderzhaniy na territorii Evropy I atmosfernaya tsirkulyatsiya [Inter-annual variability of surface and integral water contents on a territory of Europe and atmospheric circulation]. Atmospheric and oceanic optics, 2018, vol. 31, no. 6, pp. 432-437. https://doi.org/10.15372/AOO20180602 (in Russian)

Benevides P., Catalao J., Miranda P. M. A. On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall. Natural Hazards and Earth System Sciences, 2015, vol. 15, pp. 2605-2616. 

Bevis M., Businger S., Chriswell S. GPS meteorology: mapping zenith wet delays onto precipitable waterJournal of Applied Meteorology, 1994, vol. 33, pp. 379-386. 

Caldas-Alvarez A., Khodayar S., Bock O. GPS – Zenith Total Delay assimilation in different resolution simulations of a heavy precipitation event over southern France // Advances in Science and Research, 2017, vol. 14, pp. 157-162. https://doi.org/10.5194/asr-14-157-2017

Davis J., Herring T.A., Shapiro I.I., Rogers A.E.E., Elgered G. Geodesy by radio interferometery: effects of atmospheric modeling errors on the estimates on baseline lengths. Radio Science, 1985, vol. 20, no. 6. pp. 1593-1607. 

Bevis M., Businger S., Herring T., Rocken C., Anthes R.A. Ware R.H. GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research, 1992, vol. 97, no. d14, pp. 15787-15801. 

Saastamoinen J. Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. Henriksen, The Use of Artificial Satellites for Geodesy. Geophys. Monogr. Ser. AGU. Washington. D.C. 1972, vol. 15, pp. 247-251. 

Smith E.K., Weintraub S. The constants in the equation for atmospheric refractive index at radio frequencies. Proceedings of the institute of Radio Science, 1953, vol. 41, pp. 1035-1037. 

Full text (russian)