«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2025. Vol 51

Vegetation Color Indexes of UAV and NDVI in Identifying the Features and Dynamics of Vegetation of Steppe Hayfields

Author(s)
V. M. Pavleichik
Abstract
The development of wildfires poses a threat to the sustainable ecological development and safety of the population of steppe regions. One of the factors in the formation of fire situations is the spatial structure of hayfields. In this regard, comprehensive studies were conducted on the site of an old-age steppe deposit in the Southern Urals to identify the relationships between spectral (NDVI) and color (NDI, ExG, ExGR) vegetation indices and the amount of phytomass on conditionally controlled and mowed sites. The results obtained indicate the multidirectional nature of vegetation restoration after haymaking based on the characteristics of the hydrothermal regime of individual years and seasons. In dry years, the vegetation of the hayfield can remain in a depressed state, in wet years it can actively increase the green phytomass with a predominance over the control areas. The use of UAVs is recommended for mapping hayfields, selecting and representative placement of monitoring sites, as well as for obtaining schemes for the distribution of color vegetation indices in conditions of rapid changes in vegetation cover and, if necessary, guaranteed systematic observations.
About the Authors
Pavleichik Vladimir Mikhailovich, Candidate of Sciences (Geography), Leading Research Scientist, Institute of Steppe UB RAS, 11, Pionerskaya st., Orenburg, 460000, Russian Federation, e-mail: vmpavleychik@gmail.ru
For citation
Pavleichik V.M. Vegetation Color Indexes of UAV and NDVI in Identifying the Features and Dynamics of Vegetation of Steppe Hayfields. The Bulletin of Irkutsk State University. Series Earth Sciences, 2025, vol. 51, pp. 47-59. https://doi.org/10.26516/2073-3402.2025.51.47 (in Russian)
Keywords
color vegetation indexes, UAV, NDVI, haymaking, fires, monitoring, steppes.
UDC
502.57(252.51):614.84
DOI
https://doi.org/10.26516/2073-3402.2025.51.47
References

Vasil'chenko A.A. Kartografirovanie senokosov v poimennykh landshaftakh yuga Rossii po raznovremennym dannym Sentinel-2 [Mapping of hayfields in floodplain landscapes of southern Russia based on Sentinel-2 data from different time periods]. Issledovanie zemli iz kosmosa [Earth exploration from space], 2023, no. 4, pp. 72-82. https://doi.org/10.31857/S0205961423030077. (in Russian)

Zdanchuk V.A., Artamonova A.I. Vliyanie vyzhiganiya na stepnuyu rastitelnost i uluchshenie pastbishchnykh ugodii [The effect of burning on steppe vegetation and improvement of pasture lands]. Kormodobyvanie [Forage extraction]. Proceedings of the Department of forage production of the Orenburg Scientific Research Institute of Meat and Dairy Cattle Breeding. Orenburg, Orenburg Book and Magazine Publ., 1938. pp. 3-20. (in Russian)

Ayurzhanaev A.A., Alymbaeva Zh.B., Zharnikova M.A., Sodnomov B.V. O vozmozhnosti otsenki nadzemnoi fitomassy stepnoi rastitel'nosti s pomoshch'yu tsvetnykh vegetatsionnykh indeksov (po dannym s"emki s bespilotnykh sistem) [On the possibility of assessing the aboveground phytomass of steppe vegetation using color vegetation indices (according to data from surveys from unmanned systems)]. Vestnik Buryatskogo gosudarstvennogo universiteta. Biologiya, geografiya, 2021, vol. 68, no. 4, pp. 45-53. https://doi.org/10.18101/2587-7143-2021-4-45-53 (in Russian)

Khoroshev A.V., Kalmykova O.G., Dusaeva G.Kh. Otsenka indeksa NDVI kak istochnika informatsii o nadzemnoi fitomasse v stepyakh [Evaluation of the normalized differential vegetation index as a source of information on aboveground phytomass in steppes]. Issledovanie zemli iz kosmosa, 2023, no. 3, pp. 27-43. https://doi.org/10.31857/S020596142303003X (in Russian)

Shinkarenko S.S., Bartalev S.A. Analiz vzaimosvyazi strukturnykh i spektral'no-otrazhatel'nykh kharakteristik rastitelnosti aridnykh pastbishchnykh landshaftov [Analysis of the influence of species composition, projective cover, and phytomass of arid landscape pasture vegetation on spectral reflectance properties based on ground measurements]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, vol. 20, no. 3, pp. 176-192. https://doi.org/10.21046/2070-7401-2023-20-3-176-192 (in Russian)

Shinkarenko S.S., Bartalev S.A. Analiz vliyaniya vidovogo sostava, proektivnogo pokrytiya i fitomassy rastitelnosti aridnykh pastbishchnykh landshaftov na ikh spektralno-otrazhatelnye svoistva po dannym nazemnykh izmerenii [Analysis of the relationship between structural and spectral-reflective characteristics of vegetation in arid grassland landscapes]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, vol. 21, no. 3, pp. 171-187. https://doi.org/10.21046/2070-7401-2024-21-3-171-187 (in Russian)

Shinkarenko S.S., Bartalev S.A., Litvinova N.V. Issledovanie vozmozhnostei opredeleniya strukturnykh kharakteristik rastitelnykh soobshchestv s dominirovaniem trostnika po dannym sputnikovoi s"emki vysokogo razresheniya, nazemnykh izmerenii i BPLA [Research on the possibilities of determining the structural characteristics of plant communities dominated by reeds using high-resolution satellite imagery, ground measurements and unmanned aerial vehicles]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, vol. 21, no. 5, pp. 188-202. https://doi.org/10.21046/2070-7401-2024-21-5-188-202 (in Russian)

Shinkarenko S.S., Berdengalieva A.N., Doroshenko V.V., Naichuk Ya.A. An analysis of the dynamics of areas affected by steppe fires in Western Kazakhstan on the basis of Earth remote sensing data. Arid ecosystems, 2023, vol. 13, no. 1, pp. 29-38. https://doi.org/10.1134/S2079096123010122

Furukawa F., Laneng L.A., Ando H. et al. Comparison of RGB and Multispectral Unmanned Aerial Vehicle for Monitoring Vegetation Coverage Changes on a Landslide Area. Drones, 2021, vol. 5, pp. 97. https://doi.org/10.3390/drones5030097

Martinez J.L., Lucas-Borja M.E., Plaza-Alvarez P.A. et al. Comparison of Satellite and DroneBased Images at Two Spatial Scales to Evaluate Vegetation Regeneration after Post-Fire Treatments in a Mediterranean Forest. Appl. Sci., 2021, vol. 11, pp. 5423. https://doi.org/10.3390/app11125423

Diaz-Delgado R., Mücher S. Editorial of Special Issue “Drones for Biodiversity Conservation and Ecological Monitoring”. Drones, 2019, vol. 3, pp. 47. https://doi.org/10.3390/drones3020047

Dubinin M., Lushchekina A., Radeloff V. Climate, Livestock, and Vegetation: What Drives Fire Increase in the Arid Ecosystems of Southern Russia? Ecosystems, 2011, vol. 14, pp. 547-562. https://doi.org/10.1007/s10021-011-9427-9

Talucci A.C., Forbath E., Kropp H. [et al.] Evaluating Post-Fire Vegetation Recovery in Cajander Larch Forests in Northeastern Siberia Using UAV Derived Vegetation Indices. Remote Sens, 2020, vol. 12, pp. 2970. https://doi.org/10.3390/rs12182970

Larrinaga A.R., Brotons L. Greenness Indices from a Low-Cost UAV Imagery as Tools for Monitoring Post-Fire Forest Recovery. Drones, 2019, vol. 3, pp. 6. https://doi.org/10.3390/drones3010006

Pavleychik V.M., Chibilev A.A. Steppe Fires in Conditions the Regime of Reserve and Under Changing Anthropogenic Impacts. Geography and Natural Recourses, 2018, vol. 39, no. 3, pp. 212- 221. https://doi.org/10.1134/S1875372818030046

Pavleychik V.M., Chibilev A.A., Padalko Yu.A. Pyrological Situation in the Steppes of Northern Eurasia. Doklady Earth Sciences, 2022, vol. 505, part 2, pp. 591-597. https://doi.org/10.1134/S1028334X22080141

Dara A., Baumann M., Hölzel N. et al. Post-Soviet Land-Use Change Affected Fire Regimes on the Eurasian Steppes. Ecosystems, 2020, vol. 23, no. 3. https://doi.org/10.1007/s10021-019-00447-w

Jaya N.M.P., Harmayani K.D., Widhiawati A.R. et al. Spatial analysis of vegetation density classification in determining environmental impacts using UAV imagery. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022, vol. V-3-2022. https://doi.org/10.5194/isprs-annals-V-3-2022-417-2022

Anderson H.B., Nilsen L., Tommervik H. et al. Using Ordinary Digital Cameras in Place of Near-Infrared Sensors to Derive Vegetation Indices for Phenology Studies of High Arctic Vegetation. Remote Sens, 2016, vol. 8, pp. 847. https://doi.org/10.3390/rs8100847

Perez-Luque A.J., Ramos-Font M.E., Barbieri M.J.T. et al. Vegetation Cover Estimation in Semi-Arid Shrublands after Prescribed Burning: Field-Ground and Drone Image Comparison. Drones, 2022, vol. 6, pp. 370. https://doi.org/10.3390/drones6110370


Full text (russian)