«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «NAUKI O ZEMLE»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «EARTH SCIENCES»
ISSN 2073-3402 (Print)

List of issues > Series «Earth Sciences». 2024. Vol 50

Flood Hazard Assessment on the Lena River Section Using the Analytical Hierarchy Method, GIS and Remote Sensing Data

Author(s)
T. A. Kapitonova, G. P. Struchkova, S. A. Tikhonova, L. E. Tarskaya
Abstract
In the modern world, there is an increase in the number of natural and man-made disasters. In order to effectively cope with the rising costs associated with damage from them, decision makers need appropriate tools for assessing the risks of dangerous phenomena. Rapid response, spatial planning, and measures, both preventive and mitigation, play an important role in integrated disaster risk management. Floods are one of the main natural disasters that cause huge damage and threaten the safety of people's lives, property, and business facilities. It is noted that the active use of satellite images, geographic information systems, and data mining methods has led to the emergence of new methods for assessing flood hazards, which usually surpass more traditional approaches. It is indicated that the initial materials for the construction of predictors and assessment of the danger of flooding were remote sensing data obtained from the following open sources: Landsat 8-OLI, ASTER GDEM images. The sufficient accuracy of the analytical hierarchy method and the possibility of integration with geographic information systems have determined the widespread use of such approaches to assess the risk of natural emergencies. It is proved that geospatial technologies provide the best potential for analyzing and providing the results necessary for prompt and effective decisionmaking about floods. It is assumed that flood risk maps can be effective tools to reduce damage from natural disasters.
About the Authors

Kapitonova Tamara Afanas’evna, Candidate of Sciences (Physics and Mathematics), Leading Research Scientist, Larionov Institute of the Physical-Technical Problems of the North SB RAS, 1, Oktyabrskaya st., 677980, Yakutsk, Russian Federation, e-mail: kapitonova@iptpn.ysn.ru

Struchkova Galina Proko’pevna, Candidate of Science (Technical), Leading Research Scientist, Larionov Institute of the Physical-Technical Problems of the North SB RAS, 1, Oktyabrskaya st., 677980, Yakutsk, Russian Federation, e-mail: pandoramy8@list.ru

Tikhonova Sardana Alekseevna, Leading Engineer, Larionov Institute of the Physical-Technical Problems of the North SB RAS, 1, Oktyabrskaya st., 677980, Yakutsk, Russian Federation, e-mail: sardankobeleva@gmail.com

Tarskaya Lina Egorovna, Leading Engineer, Larionov Institute of the Physical-Technical Problems of the North SB RAS, 1, Oktyabrskaya st., 677980, Yakutsk, Russian Federation, e-mail: lina.tarskaya@mail.ru

For citation

Kapitonova T.A., Struchkova G.P., Tikhonova S.A., Tarskaya L.E. Flood Hazard Assessment on the Lena River Section Using the Analytical Hierarchy Method, GIS and Remote Sensing Data. The Bulletin of Irkutsk State University. Series Earth Sciences, 2024, vol. 50, pp. 63-75. https://doi.org/10.26516/2073-3402.2024.50.63 (in Russian)

Keywords
природные чрезвычайные ситуации, карты риска наводнений, ГИС, данные дистанционного зондирования, метод аналитической иерархии.
UDC
519.816+004.8(282.256.6)
DOI
https://doi.org/10.26516/2073-3402.2024.50.63
References

Burceva E.I., Parfenova O.T. Ekonomicheskij ushcherb ot navodnenij na rekah Respubliki Saha (Yakutiya) [Economic damage from floods on the rivers of the Republic of Sakha (Yakutia)]. Problemy sovremennoj ekonomiki [Problems of modern economy]. 2015, no. 1 (53), pp. 256-259. (in Russian)

Kartvelishvili N.A. Stokhasticheskaya gidrologiya [Stochastic Hydrology]. Leningrad, Gidrometeoizdat Pabl. 1980, 200 p. (in Russian)

Koronkevich N.I., Barabanova E.A., Zajceva I.S. Ekstremal'nye gidrologicheskie situacii [Extreme hydrological situations]. Moscow, Media-PRESS, 2010, 464 p. (in Russian)

Moskvichev V.V., Simonov K.V. Statisticheskiye modeli otsenki opasnosti navodneniy [Statistical models of the estimation of flood’s risks]. Problemy bezopasnosti i chrezvychaynykh situatsiy [Safety and Emergency Problems], 2008, no. 4, pp. 11-19. (in Russian)

Nicheporchuk V.V. Resursy i tekhnologii regionalnykh informatsionno-analiticheskikh sistem prirodno-tekhnogennoy bezopasnosti [Resources and technologies of regional information-analytical systems of natural-technogenic safety]. Dr. sci. diss. Novosibirsk, 2022, 295 p. (in Russian)

Nogovitsyn D.D., Kilmyaninov V.V. K voprosu o prognozirovanii zatornyh yavlenij na reke Lena [To the question about forecasting of jamming phenomena on the Lena River]. Nauka i tekhnika v Yakutii [Science and Technology in Yakutia], 2007, no 1, pp. 19-24. (in Russian)

Ammosov A.P., Strizhov V.B., Belov L.S., Makarenko V.I. O vosstanovlenii Lenskoy neftebazy posle navodneniya 2001 [On the restoration of the Lena oil depot after the flood of 2001]. Nauka – proizvodstvu [Science – production], 2003, no 8. pp. 3-6. (in Russian)

Saati S., Tomas L. Prinyatie reshenij pri zavisimostyah i obratnyh svyazyah: Analiticheskie seti. [Decision Making with Dependencies and Feedbacks: Analytical Networks]. Ed. by Andrejchikov A.V., Andrejchikova O.N. Moscow, LKI Publ., 2008, 360 p. (in Russian)

Struchkova G.P., Kapitonova T.A., Sleptsov O.I. Ispolzovanie bajesovskih setej dlya analiza riskov navodnenij vo vremya vesennego polovod'ya na uchastke r. Lena vozle p. Tabaga [Using Bayesians networks to analyze flood risks during spring floods in the section of the Lena river near the village Tabaga]. Problemy bezopasnosti i chrezvychajnyh situacij [Safety and Emergency Problems], 2022, no. 5. pp. 33-44. https://doi.org/10.36535/0869-4176-2022-05-3 (in Russian)

Rashidi Shikhteymour Sharareh, Moslem Borji, Mehdi Bagheri-Gavkosh et al. A novel approach for assessing flood risk with machine learning and multi-criteria decision-making methods. Applied Geography, 2023, vol. 158, pp. 103035.

Stelzenmüller V., Lee J., Garnacho E., Rogers S.I. Assessment of a Bayesian Belief Network– GIS framework as a practical tool to support marine planning. Marine Pollution Bulletin. 2010, vol. 60, iss. 10, pp. 1743-1754. https://doi.org/10.1016/j.marpolbul.2010.06.024

Yun Chen, Rui Liu, Damian Barrett et al. A spatial assessment framework for evaluating flood risk under extreme climates. Science of The Total Environment, 2015, vol. 538, pp. 512-523. https://doi.org/10.1016/j.scitotenv.2015.08.094

Abebe Yekenalem, Kabir Golam, Tesfamariam Solomon. Assessing urban areas vulnerability to pluvial flooding using GIS applications and Bayesian Belief Network model. Journal of Cleaner Production. 2018, vol. 174. pp. 1629-1641. https://doi.org/10.1016/j.jclepro.2017.11.066

Fernández D.S., Lutz M.A. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Engineering Geology, 2010, vol. 111, iss. 1–4, pp. 90-98. https://doi.org/10.1016/j.enggeo.2009.12.006.

Chaulagain Deepak, Rimal Parshu Ram, Ngando Same Noel et al. Flood susceptibility mapping of Kathmandu metropolitan city using GIS-based multi-criteria decision analysis. Ecological Indicators, 2023, vol. 154. p. 110653.

Shale Gemechu, Bantider Amare, Abebe Ketema et al. Geographic information system (GIS)- Based multicriteria analysis of flooding hazard and risk in Ambo Town and its watershed, West shoa zone, oromia regional State, Ethiopia. Journal of Hydrology: Regional Studies. 2020, vol. 27, pp. 100659.

Rijal S., Rimal B., Sloan S. Flood hazard mapping of a rapidly urbanizing city in the foothills (Birendranagar, Surkhet) of Nepal. Land, 2018, vol. 7, no. 2. https://doi.org/10.3390/land7020060


Full text (russian)